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In atherosclerosis patients, vascular endothelial dysfunction is commonly observed

alongside damage of the vascular endothelial glycocalyx, an extracellular matrix bound to

and encapsulating the endothelial cells lining the blood vessel wall. Although atheroscle-

rotic risk factors have been reported in severe patients with coronavirus disease 2019

(COVID-19), the exact mechanisms are unclear. The mortality associated with the COVID-

19 outbreak is increased by comorbidities, including hypertension, diabetes, obesity,

chronic obstructive pulmonary disease (COPD), and cardiovascular disease. Besides, older

individuals and smokers have significantly worse outcomes. Interestingly, these comor-

bidities and risk factors are consistent with the pathophysiology that causes vascular

endothelial glycocalyx damage. Moreover, vascular glycocalyx dysfunction causes micro-

vascular leakage, which results in interstitial pulmonary abnormal shadows (multiple

patchy shadows with a ground glass inter-pneumonic appearance). This is frequently

followed by severe acute respiratory distress syndrome (ARDS), closely related to coagulo-

fibrinolytic changes contributing to disseminated intravascular coagulation (DIC) and Ka-

wasaki disease shock syndrome, as well as inducing activation of the coagulation cascade,

leading to thromboembolism and multiple organ failure. Notably, SARS-CoV-2, the caus-

ative virus of COVID-19, binds to ACE2, which is abundantly present not only in human

epithelia of the lung and the small intestine, but also in vascular endothelial cells and

arterial smooth muscle cells. Moreover, COVID-19 can induce severe septic shock, and

sepsis can easily lead to systemic degradation of the vascular endothelial glycocalyx. In the

current review, we propose new concepts and therapeutic goals for COVID-19-related

vascular endothelial glycocalyx damage, based on previous vascular endothelial medi-

cine research.
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It has been said that scientists could win the Nobel Prize in

physiology or medicine if they could invent a cure for the

common cold. Since the common cold is caused by various

viruses, which can easily mutate their genes, it has been

extremely difficult to develop any specificmedicine or vaccine

for influenza infection. For this reason, following infection,

individuals are advised to wait for recovery by taking coping

medications for the symptoms, such as fever, cough/sputum,

diarrhea, and headache, as well as getting sufficient nutrition

and rest. It is known that 15% of common colds are caused by

conventional human coronavirus (HCoV) infections (e.g.,

HCoV-229E, HCoV-0C43, HCoV-HKU1, and HCoVNL63). Coro-

navirus disease 2019 (COVID-19) was initially thought to be a

slightly stronger viral infection compared to the seasonal

common cold or flu. However, it has become clear that the

infectious power of severe acute respiratory coronavirus 2

(SARS-CoV-2), the virus causing COVID-19, is remarkable, and

as a result has led to life-threatening complications in a sig-

nificant proportion of patients.

SARS-CoV-2 spread rapidly throughout the world, largely

due to asymptomatic viral transfer. According to the COVID-

19 dashboard website by the Center for Systemics Science

and Engineering at Johns Hopkin University, the number of

global deaths due to COVID-19 was 291,487 as of May 12, 2020.

A subset of infected patients go on to develop a more se-

vere form of disease, which is characterized by expanding

pulmonary lesions, sepsis, acute respiratory distress syn-

drome, and respiratory failure [1]. The fight against SARS-CoV-

2 is decisively different from that against conventional viral

infections. Since many infected people are asymptomatic,

SSARS-CoV-2 is easily spread to others indiscriminately,

which has led to the formation of huge clusters of severe

COVID-19 patients, especially in situations where there are

increased numbers of individuals with opportunistic in-

fections, such as in hospitals and nursing homes for the

elderly.

There are numerous differences between COVID-19 and

the common cold-induced by traditional coronaviruses or flu.

For instance, thrombotic complications are emerging as a

critical complication in patients with COVID-19 [2]. In line

with this, COVID-19 patients often present with special fea-

tures, such as increasing D-dimer and fibrin degradation

levels, prolonged prothrombin time, and the development of

disseminated intravascular coagulation (DIC) [3], which have

all been associated with poor prognosis in severe COVID-19

patients [4]. Indeed, microvascular thrombosis can induce

swollen hands, and toes like frost have been reported in

COVID-19 patients.

It is known that patients with chronic obstructive pulmo-

nary disease (COPD) are more likely to develop pneumonia as

a result of COVID-19 infection. Furthermore, according to

accumulating evidence, high-risk patients with critical

COVID-19 are more frequently older (>65 years of age), male,

obese, smokers, and have common comorbidities, such as

hypertension (57%), obesity (42%), and diabetes (34%) [5]. Thus,

some cardiologists speculated that a large number of acute

coronary syndrome (ACS) patients might be at an increased

risk of mortality from COVID-19, because these risk factors

were thought to coincidewith traditional coronary risk factors
Please cite this article as: Yamaoka-Tojo M, Endothelial glycocalyx da
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of atherosclerotic diseases. However, as COVID-19 outbreak

spread, a significant number of patients without ACS were

struck with severe disease in a short period of time, and DIC

has been observed in 71.4% of non-survivors [4]. Most of the

medical doctors were at a loss to what type of SARS-CoV-2-

infected patients should be considered at high risk of critical

COVID-19. Recent evidence revealed that severe COVID-19

patients have cardiac arrhythmias, myocardial injury and

heart failure, DIC, and pulmonary embolism [6]. Interestingly,

these phenomena can be explained centrally with one

concept: the vascular endothelial glycocalyx, an extracellular

matrix bound to and encapsulating the endothelial cells lining

the blood vessel wall.

In the current review, previously unrevealed key compo-

nents in severe COVID-19 pathophysiology will be outlined,

with the aim to accelerate related research for a diagnostic

and therapeutic approach in the fight against COVID-19.
Specific features of SARS-CoV-2

SARS-CoV-2 binds to the transmembrane angiotensin-

converting enzyme 2 (ACE2) protein to enter type II alveolar

epithelial cells, macrophages, and other cell types [7]. The

spike protein of SARS-CoV-2 is primed by transmembrane

protease, serine-2 (TMPRSS2). The primary symptoms of

COVID-19 are cough (67.8%), diarrhea (3.8%), and fever (total

88.7% during hospitalization) [3], which might provide

possible routes of infection via the respiratory tract and in-

testines, as the entry for SARS-CoV-2.

ACE2 is also present on vascular endothelial cells and

arterial smoothmuscle cells in all organs [8]. As a result, SARS-

CoV-2 can directly adhere to vascular endothelial cells, and

induce vascular endothelial dysfunction, followed by micro-

vascular leakage,microvascular coagulation, excessive release

of inflammatory cytokines, and disruption of cell-cell contact.

The most notable features in COVID-19 infection are

asymptomatic pneumonia detected by chest X-ray or

computed tomography (CT). Furthermore, multiple ground

glass patchy shadows are common radiological findings in

SARS-CoV-2 infected patients with mild symptoms. The dif-

ficulty in perceiving signs of worsening COVID-19maymake it

difficult to notice the rapid deterioration in the condition of

patients, which may also increase the number of sudden

deaths before hospitalization. It is known that blood oxygen

saturation (SpO2) is decreased in COVID-19 patients before

symptoms such as shortness of breath and dyspnea; however,

an increase in respiratory rate is observed just before the

decrease in SpO2. Therefore, if the respiratory rate is 20 times/

min or more, patients should be carefully observed for wors-

ening respiratory conditions.

SARS-CoV-2 has a long viral spreading time (median, 20.0

days; interquartile range, 17.0e24.0 days) in survivors [9];

indeed, the longest period of virus excretion was 37 days.

Furthermore, in non-survivors SARS-CoV-2 could be detected

up until their death [9]. This long viral excretion has contrib-

uted significantly to the rapid spread of the disease, and pro-

vides the rationale for further isolation of infected patients

and optimal antiviral therapeutic strategies.
mage as a systemic inflammatorymicrovascular endotheliopathy
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Life-threatening complications in COVID-19

In Zhongnan Hospital of Wuhan University in Wuhan, China,

of 138 hospitalized patients with SARS-CoV-2-infected pneu-

monia, 36 patients (26.1%) were transferred to the intensive

care unit (ICU) because of complications, including ARDS

(61.1%), arrhythmia (44.4%), and shock (30.6%) [10]. Compared

to the 102 patients not treated in the ICU, patients treated in

the ICU were much older and were more likely to have

comorbidities [10].

Indeed, it is now understood that the mortality associated

with the COVID-19 outbreak is increased by the presence of

comorbidities, including hypertension, diabetes, COPD, and

cardiovascular disease. Furthermore, elderly individuals (>65
years of age) and smokers have been shown to have signifi-

cantly worse outcomes. Interestingly, these comorbidities and

risk factors are consistent with the pathophysiology that cau-

ses damage to vascular endothelial glycocalyx [11], a negative

charged brush-like monolayer of endothelial cells [12].

The generation of a cytokine storm induces organ damage,

followed by edema, air exchange dysfunction, ARDS, acute

cardiac injury, and secondary infection, all of which may lead

to death. The presence of a cytokine storm is an important

factor that leads to the exacerbation of COVID-19 or even

death [13]. Therefore, avoidance of a cytokine storm may be

the key to the treatment of COVID-19 patients [14].

Coagulation disorders occur in patients infected with

COVID-19, SARS-CoV-1, and MERS-CoV [2]. Regarding COVID-

19, DIC has been observed in 71.4% of non-survivors [4]. In line

with this, D-dimer levels of 2.0 mg/mL ormore (4-fold increase)

on admission can predict in-hospital mortality in patients

with COVID-19, which indicates that D-dimer could be an

earlymarker to improve themanagement and stratification of

COVID-19 patients [15]. Furthermore, dysregulation of the

coagulation cascade and the subsequent formation of intra-

alveolar or systemic fibrin clots are prominent findings in

coronavirus infections associated with severe respiratory

disease. In addition, microvascular endothelial failure and

peripheral thrombosis may induce frost-like swollen hands

and toes. Therefore, severe COVID-19 patients should be given

treatments for coagulation disorders in order to prevent

multiple organ failure [2].
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
COVID-19 and vascular endothelial dysfunction

Underlying cardiovascular disease is associated with an

increased risk of in-hospital death among patients hospital-

ized with COVID-19 [16]. According to a previous report of

COVID-19 in Wuhan, 48% of patients had comorbidities,

including hypertension (39%), diabetes (19%), and coronary

heart disease (8%) [9]. Furthermore, patients with preexisting

coronary risk factors and cardiovascular disease had the

highest mortality rates (10.5%) following infection with SARS-

CoV-2 [17]. Data have shown that SARS-CoV-2-infected pa-

tients �60 years old have more systemic symptoms and more

severe pneumonia than patients aged �60 years [18]. In sup-

port of this, multivariable regression analysis showed

increased odds of in-hospital death with old age [9]. It appears
Please cite this article as: Yamaoka-Tojo M, Endothelial glycocalyx da
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that COVID-19 ismore likely to deteriorate due to an increased

in comorbidities in elderly, which may lead to immune

dysfunction in elderly COVID-19 patients. In other words,

microvascular leakage, which acts as awindow for SARS-CoV-

2 organ invasion, is caused by more advanced vascular

endothelial glycocalyx damage in elderly patients [19]. In

addition, the vascular endothelial glycocalyx is more easily

damaged in elderly people than young, and common comor-

bidities are known to perturbate the vascular endothelial

glycocalyx [20]. The vascular endothelial glycocalyx is sys-

temically damaged under the conditions of old age and mul-

tiple comorbidities, whichmay be a potentmechanism for the

development of lethal complications in COVID-19 patients.

Severe acute respiratory syndrome coronavirus 1 (SARS-

CoV-1) and SARS-CoV-2 bind to ACE2, which is abundantly

present not only on human epithelia of the lung and the small

intestine, but also on vascular endothelial cells, arterial

smooth muscle cells, cardiomyocytes, cardiofibroblasts, and

coronary endothelial cells [21]. The exploitation of ACE2 by

coronavirus may impair the renin-angiotensin-aldosterone

system (RAAS). Furthermore, ACE2 is highly expressed on

failing human hearts and pericytes, which could lead to the

development of microvascular dysfunction [22], and explain

the greater propensity for ACS [23,24]. Therefore, careful

attention must be paid to the exacerbation of COVID-19 in

patients with highly expressed ACE2. On the contrary, in se-

vere COVID-19 patients, it is necessary to pay attention to

cardiovascular diseases, such as microvascular endothelial

dysfunction [Fig. 1], the onset and exacerbation of heart fail-

ure, and the onset of ACS.

ACE2 is a potent cardioprotective and counterregulatory

enzyme that degrades angiotensin II to angiotensin-(1e7),

thereby attenuating its effects on vasoconstriction, sodium

retention, and fibrosis [25]. MasR, an endogenous receptor of

angiotensin-(1e7), has emerged as a physiological antagonist

that counter-regulates RAAS activation via the ACE2/angio-

tensin-(1e7)/MasR axis. The angiotensin II/AT1 receptor is

critically involved in disease progression leading to non-

ischemic, ischemic, and diabetic cardiomyopathy, and to

obesity-associated cardiac dysfunction. ACE2 shifts the bal-

ance to the cardioprotective ACE2/angiotensin-(1e7)/MasR

axis through converting angiotensin II to angiotensin-(1e7)

[21]. In a recent paper that reported on 8910 patients with

COVID-19, no harmful association of ACE inhibitors or

angiotensin-receptor blockers with in-hospital death was

confirmed [16].
Vascular endothelial glycocalyx

Glycocalyx is defined as a thick mixture of protein lipids and

post-translational sugar structures, which surround all living

cells and act as a buffer between the cell and the extracellular

matrix [26]. The monolayer of vascular endothelial cells con-

stitutes the inner cellular lining of vasculatures such as ar-

teries, veins, and capillaries. The luminal layer is in direct

contact with blood as a vascular protective barrier between

blood and organs. The vascular endothelial glycocalyx on the

luminal surface of all endothelial cells plays an essential role

to regulate coagulation, inflammation, trans-capillary flux,
mage as a systemic inflammatorymicrovascular endotheliopathy
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Fig. 1 Comorbidities related to worsening of COVID-19 and vascular endothelial glycocalyx damage. The vascular endothelial

glycocalyx is impaired due to factors such as smoking, physical inactivity, hypertension, diabetes, obesity, and cardiovascular

diseases. Severe acute respiratory coronavirus 2 (SARS-CoV-2) can easily infected the increased endothelial glycocalyx-

damaged microvasculature that is observed to a greater extent in elderly people compared to young people, and in males more

than females. ARDS: Acute respiratory distress syndrome, DIC: Disseminated intravascular coagulation, CKD: Chronic kidney

disease, ROS: Reactive oxygen species, RAAS: Renin-angiotensin-aldosterone system, COPD: Chronic obstructive pulmonary

disease.
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and microvascular permeability [27,28]. The glycocalyx is a

complex gel-like layer of sialic acid-containing glycoproteins,

membrane-bound proteoglycans (e.g., syndecans and glypi-

cans), and glycosaminoglycan side chains (e.g., heparin sul-

fate and chondroitin sulfate), and long chains of hyaluronan

(HA) [29,30]. The vascular endothelial glycocalyx is stabilized

by shear stress [31], which is pivotal for proper nitric oxide

(NO) production [32,33]. Glycosaminoglycans are constantly
vWF
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degraded through enzymes, and also synthesized and

extruded through vesicles of the Golgi apparatus to maintain

homeostatic balance [34]. As shown in Fig. 2, homeostasis is

broken down, and vascular endothelial glycocalyx shedding/

degradation occurs in conditions of cellular stress, ischemia/

reperfusion injury [35], the presence of endotoxins [36], in-

flammatory mediators [37], atrial natriuretic peptide, exces-

sive reactive oxygen species [38], hyperglycemia [39,40], high-
helial Cell

VCAM-1

ROS

VEGF

ACE2

elial glycocalyx damage is associated with vascular
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Fig. 3 Intact vascular endothelial glycocalyx. In a situation where vascular endothelial cells are sufficiently covered with healthy

vascular endothelial glycocalyx, even if severe acute respiratory coronavirus 2 (SARS-CoV-2) enters the body, it may be

neutralized by the effects of appropriate reactive oxygen species (ROS) and soluble angiotensin-converting enzyme 2 (sACE2);

consequently, it may be possible to prevent entry of the virus into the vascular endothelium. VEGF: Vascular endothelial growth

factor, VEGFR: VEGF receptor, NO: Nitric oxide, eNOS: Endothelial NO synthase, TM: Thrombomodulin, tPA: Tissue plasminogen

activator, PGI2: Prostacyclin.
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salt intake [41], hypertension [42], familial hypercholester-

olemia [43], and oxidized low-density lipoprotein (ox-LDL) [44].

Of note, rosuvastatin administration has been shown to

partially restore damaged vascular endothelial cells in pa-

tients with heterozygous familial hypercholesterolemia [43].

Moreover, unfavorable lifestyle, including smoking and

physical inactivity, also induces glycocalyx degradation.

Indeed, it has been previously shown that a smoking cessation

program using varenicline or nicotine replacement therapy

for 3 months resulted in a decrease of carbon monoxide (CO),

oxidative stress, arterial stiffness, and restored the endothe-

lial glycocalyx [45]. Physical inactivity induces systemic low

shear stress in the body, and it has been demonstrated that

AMP-activated protein kinase regulates glycocalyx impair-

ment due to hyaluronan degradation and macrophage

recruitment in response to low shear stress in amice common

carotid artery ligation model [46]. Moreover, the vascular

endothelial glycocalyx is perturbed by various unfavorable

disease conditions, including dehydration, acute infectious

disease [47], trauma [48], sepsis [49], ARDS [50], preeclampsia

[51], gestational diabetes mellitus [52], and chronic disease

conditions, such as hypertension, diabetes [19,53], chronic

kidney disease [54], atherosclerosis [55e60], stroke [61,62],

dementia [63], microvascular angina [64], ACS [65], and heart

failure [66]. In ApoE knockoutmice, an inhibitor of hyaluronan

synthesis, 4-metylumbelliferone (4-MU) has been shown to

interfere with the protective function of the endothelial gly-

cocalyx, thereby facilitating leukocyte adhesion, subsequent

inflammation, and progression of atherosclerosis [56].
Please cite this article as: Yamaoka-Tojo M, Endothelial glycocalyx da
in COVID-19, Biomedical Journal, https://doi.org/10.1016/j.bj.2020.08.
The vascular endothelial glycocalyx is crucial to endothe-

lial function [67], as it is involved in microvascular reactivity,

and modulates the interaction between the endothelium and

blood constituents [68]. In addition, the vascular endothelial

glycocalyx protects endothelial cells from shear stress caused

by blood flow, and serves as a vascular permeability barrier

[69]. As shown in Fig. 3, the intact vascular endothelial gly-

cocalyx harbors various cytokines and chemokines, receptors,

growth factors, gap junction proteins, and enzymes, including

extracellular superoxide dismutase (ecSOD), endothelial nitric

oxide synthase (eNOS), ACEs, lipoprotein lipase, xanthine

oxidase, and antithrombin III, all of which play a central role

in endothelial function and blood/microvascular/tissue in-

teractions [68]. Vascular endothelial dysfunction and vascular

failure occur in situations where the endothelial glycocalyx is

impaired, which has roles in the development of various

cardiovascular diseases [70,71].

The vascular endothelial glycocalyx has the potential to not

only function as a physical cytoprotective barrier for vascular

endothelial cells, but also as a mechanism to regulate intracel-

lular cell signaling. IQGAP1, anessential scaffoldingprotein that

binds to vascular endothelial growth factor (VEGF) receptor-2

[72], has roles in many different aspects of cell physiology and

interacts with numerous proteins [73]. IQGAP1 modulates the

actin cytoskeleton through Rac1 and Cdc42, while cell-cell

adhesion through VE-cadherin and b-catenin regulates the

mitogen-activated protein kinase pathway and forms a com-

plex with the hyaluronan receptor CD44 to regulate cell migra-

tion and proliferation [74]. In vascular endothelial cells, IQGAP1
mage as a systemic inflammatorymicrovascular endotheliopathy
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Fig. 4 Severe COVID-19 comorbidity induced by vascular endothelial glycocalyx damage. The vascular endothelial glycocalyx

can be damaged by various factors, including smoking, physical inactivity, hypertension, diabetes, obesity, and cardiovascular

diseases. Various lethal conditions in COVID-19 (e.g., acute respiratory distress syndrome [ARDS], disseminated intravascular

coagulation [DIC], Kawasaki disease, microvascular thrombosis, and arrhythmias) may be caused by a common mechanism,

damage of the vascular endothelial glycocalyx. CKD: Chronic kidney disease, ROS: Reactive oxygen species, RAAS: Renin-

angiotensin aldosterone system, COPD: Chronic obstructive pulmonary disease.
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induces angiogenesis through binding to VEGF receptor-2 and

VE-cadherin containing adherens junctions in a ROS-

dependent manner [75]. IQGAP is required for the establish-

ment of cell-cell contact, and is presumably necessary to

collaborate with the vascular endothelial glycocalyx.
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Virus infectious disease and vascular endothelial
glycocalyx

Among viral infectious diseases, research on the relationship

between dengue fever and vascular endothelial glycocalyx is

progressing. Dengue hemorrhagic fever/dengue shock syn-

drome (DHF/DSS) is characterized by vascular leakage and

shock. The dengue virus nonstructural protein 1 (NS1) is the

only membrane-associated protein that anchors its replica-

tion complex to the cellular membrane. Increased circulating

levels of vascular endothelial glycocalyx layer components,

such as hyaluronic acid, heparin sulfate, claudin-5, and

syndecan-1, have been associated with disruption of the

vascular endothelial glycocalyx, and the subsequent devel-

opment of plasma leakage and severe dengue disease [76,77].

Sialic acid has been established as an important determinant

of endothelial barrier function in both in vitro and in vivo

studies [78,79]. This evidence emphasizes the importance of

evaluation and therapy targeted to vascular endothelial gly-

cocalyx in severe conditions induced by viral infections,

potentially including COVID-19.
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Severe inflammation induces vascular
endothelial glycocalyx dysfunction

The vascular endothelial glycocalyxmaintains homeostasis of

the vasculature, including the control of vascular permeability
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and microvascular tone, prevention of microvascular throm-

bosis, and regulation of leukocyte adhesion [80]. During

sepsis, the glycocalyx is degraded via inflammatory factors,

such as metalloproteinases, heparinase, and hyaluronidase

[81].

Systemic damage to the delicate layer of the vascular gly-

cocalyx results in increased protein and water transit to the

extra-vascular space. In septic conditions, the vascular

endothelial glycocalyx is perturbated and the layer becomes

thinner, which induces microvascular excessive permeability

and contributes to interstitial edema in various organs [81,82].

The systemic breakdown of the glycocalyx occurs

dramatically in fatal disease conditions, such as severe in-

fectious diseases, sepsis, hemorrhagic shock, burn, traumatic

brain injury [83], and traumatic endotheliopathy, a syndrome

associated with high mortality [84]. Fig. 4 shows a schematic

image of severe COVID-19 comorbidity induced by vascular

endothelial glycocalyx damage. Patients with underlying dis-

eases have systemic endothelial glycocalyx disorders due to

complicated mechanisms. Once these patients are infected

with SARS-CoV-2, COVID-19-induced systemic vascular in-

flammatory endotheliopathy is more likely to develop serious

complications such as ARDS, DIC, Kawasaki disease shock

syndrome, microvascular thrombosis, and arrhythmias.
Arrhythmia and sudden death following
vascular endothelial glycocalyx damage

In acute cytokine storm models utilized to examine systemic

inflammatory response syndrome (SIRS), intravenous injec-

tion of proinflammatory cytokines, including interleukin-6

(IL-6), IL-1, and tumor necrosis factor (TNF), induces vascular

hyperpermeability. It has been suggested that the inhibition of

connexin43 (Cx43) hemichannels could counteract TNF-
mage as a systemic inflammatorymicrovascular endotheliopathy
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induced SIRS-associated vascular permeability and lethality

inmice [85]. Cx43 is an important cardiac gap junction protein,

and excessive opening of Cx43 hemichannels are observed in

ischemic or inflammatory conditions [86,87]. Inhibition of

Cx43 protects against vascular leakage, hypothermia, and

mortality in a TNF-induced SIRS mouse model. Furthermore,

altered Cx43 expression produces an arrhythmia substrate in

the heart, which contributes to the arrhythmias of sudden

cardiac death [88]. Interestingly, vascular endothelial glyco-

calyx degradation disrupts endothelial Cx43 proteins, likely

blocking the inter-endothelial molecular transport that

maintains endothelial cell and vascular tissue homeostasis to

resist disease [89]. Endothelial glycocalyx damage in sepsis

induced by severe viral infections like COVID-19 may occur as

a result of a change in Cx43 expression in the microvascula-

ture and the heart. SAR-CoV-2 binds to ACE2, which is also

abundantly expressed in cardiomyocytes, cardiofibroblasts,

and coronary endothelial cells [21]; consequently, the virus

has the potential to induce lethal arrhythmia in COVID-19

patients via damaging Cx43 in these cell types. Examination

of the blood electrolyte levels is important to predict lethal

arrhythmias, because COVID-19 patients tend to have hypo-

natremia or abnormalities of other electrolytes. Furthermore,

all COVID-19 patients should receive an electrocardiogram to

check for iatrogenic QT prolongation or other arrhythmias.

Becausemany antiviral drugs can cause cardiac arrhythmia or

other cardiovascular disorders, the presence of cardiac

toxicity must be closely monitored [90].
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Kawasaki disease shock syndrome and vascular
endothelial glycocalyx

Kawasaki disease is an acute febrile systemic vasculitis that

predominantly occurs in children below 5 years of age. Sys-

temic vasculitis is particularly observed in small- and

medium-sized arteries. Because Kawasaki disease shows

seasonal, temporal, and regional patterns, an infectious agent

is thought to cause or trigger the disease presentation [91].

According to a previous serological test, the development of

Kawasaki disease is involved in human coronavirus (HCoV)-

229E infection [92]. Although its exact etiopathogenesis is

unclear, it is thought to be a complex interplay of genetic

factors, infections, and immunity [93]. Though self-limiting in

many cases, Kawasaki disease can lead to severe complica-

tions, such as coronary artery aneurysms and thrombo-

embolic occlusions; thus, early diagnosis and urgent atten-

tion tis required to avoid these complications. The presence of

coronary aneurysms was significantly and positively corre-

lated with male sex, IVIG resistance, higher neutrophil/

lymphocyte ratio, inotrope treatment, cardiac failure,

abdominal pain, and neurological symptoms [94].

In both Kawasaki disease and COVID-19, some clinical

symptoms such as fever, rash, and eye redness (conjunctival

injection) are present in many infected children. The first case

of Kawasaki disease with concurrent COVID-19 was reported

in April 2020 [95], since then, betweenApril 29 andMay 3, 2020,

15 cases were reported by the New York City Health Depart-

ment, and 64 cases statewide were reported from the New

York State Department of Health. Furthermore, an uptick in
Please cite this article as: Yamaoka-Tojo M, Endothelial glycocalyx da
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Kawasaki disease or Kawasaki-like disease was established

among children coincident with the COVID-19 outbreaks in

the U.K., Italy, and Spain.

Kawasaki disease shock syndrome, a severe subtype of

Kawasaki disease, is a RARE complication of Kawasaki disease

that can lead to significant sequelae and poor outcome [96].

According to a previous report of 187 consecutive patients

with Kawasaki disease, 13 (7%) met the definition for Kawa-

saki disease shock syndrome [96]. Furthermore, Kawasaki

disease shock syndrome has been shown to be characteristic

of more severe inflammatory cytokine production, and a

tendency to develop IVIG non-responsiveness and coronary

abnormalities [97]. Experts have indicate that there may be a

small increase in the numbers of children with severe COVID-

19 and features consistent with toxic shock syndrome

(abdominal pain and gastrointestinal symptoms), which

appear to be similar to those of Kawasaki disease shock

syndrome.

Surprisingly, circulating endothelial glycocalyx compo-

nents (syndecan-1 and hyaluronan) were significantly

elevated at the acute phase, and serum hyaluronan was

determined as the biomarker that is the best predictor of

future development of coronary artery lesions in Kawasaki

disease [98]. Serum levels of soluble syndecan-1 (sCD138), one

of the major core proteins expressed on the vascular endo-

thelial glycocalyx, is considered to reflect vascular endothelial

damage and inflammation in Kawasaki disease [99]. Consid-

ering the common pathophysiology between Kawasaki dis-

ease and COVID-19, it is expected that the knowledge on

vascular endothelial glycocalyx-related Kawasaki disease can

be applied to research on new therapeutic strategies and

biomarkers for predicting deterioration in patients with se-

vere COVID-19.
Vascular endothelial glycocalyx dysfunction
induces a severe phenotype in disease

COVID-19 can induce severe septic shock, and sepsis can

easily magnitude systemic degradation of the vascular endo-

thelial glycocalyx. Vascular endothelial glycocalyx dysfunc-

tion contributes to septic-induced vascular endothelial cell

damage leading to altered microvascular permeability.

Therefore, vascular endothelial glycocalyx may have a key

regulatory role in maintaining the pulmonary vascular barrier

and its homeostasis [100]. The recent findings on vascular

endothelial glycocalyx are outlined below, in the context of

COVID-19-related complications.

1) Septic shock

Degradation of vascular endothelial glycocalyx represents

one of the earliest and most significant sites of injury during

sepsis [101]. In mice models, the total volume of vascular

endothelial glycocalyx has been shown to be drastically

reduced in sepsis. Excessive ROS and proinflammatory cyto-

kines, such as TNF-a and IL-1b, are considered themain actors

in endothelial glycocalyx degradation in sepsis [102]. Both

mechanisms activate the sheddases heparinase and matrix

metalloproteases (MMPs). Furthermore, a thinner and sparser
mage as a systemic inflammatorymicrovascular endotheliopathy
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endothelial glycocalyx is associated with vascular perme-

ability and resulting edema, hypovolemia, vasodilation trou-

bles, leukocyte attraction, platelet aggregation, and lung

injury [81,103]. The increase in pulmonary vascular perme-

ability as a result of sepsis, manifests acute lung injury and

ARDS [104].

2) Acute respiratory distress syndrome (ARDS)

The main features of ARDS are lung endothelial cell injury,

severe inflammatory responses, neutrophil adhesion or infil-

tration, and interstitial edema. Vascular endothelial glyco-

calyx and inflammatory responses are crucial for the

pathogenesis of ARDS [105]. Pulmonary edema associated

with albumin leakage is closely related to degradation of the

endothelial glycocalyx [100]. The endothelial glycocalyx not

only acts as a physical barrier to prevent albumin exudation,

but also as signaling molecules to participate in hemody-

namics [100,106e109].

3) Microvascular thrombosis/DIC

The vascular endothelial glycocalyx is an important regu-

lator of microvascular permeability preventive thrombus

formation [110]. Coagulation disorders occur in coronavirus

infected patients with COVID-19, SARS-CoV-1, and MERS-CoV

[2]. Moreover, DIC has been observed in 71.4% of non-

survivors of COVID-19 [4]. Recently the International Society

on Thrombosis and Hemostasis (ISTH) DIC Scientific Stan-

dardization Committee has proposed a new category termed

“sepsis-induced coagulopathy (SIC)” to facilitate earlier diag-

nosis of DIC, which is hoped to lead to more rapid in-

terventions in these critically ill patients [111].

4) Multiple organ failure

Systemic ischemia occurs in various life-threatening clin-

ical settings, including cardiac arrest, hemorrhagic shock

during trauma, or ST-elevation myocardial infarction compli-

cated by cardiogenic shock [112,113]. During these situations,

distortion of the glycocalyx structure and function contributes

to the multiorgan dysfunction that follows global ischemia of

various etiologies, such as renal, cardiac, pulmonary, and he-

patic ischemia/reperfusion injuries [68,114]. Damage of the

vascular endothelial glycocalyx in these ischemia/reperfusion

injuries is largely mediated by ROS, specifically through the

activation of endothelial NADPH oxidase 2 (NOX2) and

xanthine oxidase that are bound to glycosaminoglycans

anchored at the endothelial surface layer [115,116].
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Remaining question: could vascular endothelial
glycocalyx damage influence the sex difference
in COVID-19?

It has been reported that there is a clear sex difference in se-

vere COVID-19 and the rate of in-hospital mortality. The

relationship between COVID-19 severity and male hormones,

or the possibility that male smokers are included to a greater

extent in these studies has been investigated, although there
Please cite this article as: Yamaoka-Tojo M, Endothelial glycocalyx da
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remain no definitive conclusions. We propose that sex dif-

ferences in the vascular endothelial glycocalyx could repre-

sent a crucial factor for the sex difference of COVID-19

severity and mortality.

In ACS patients, it has been reported that males shedmore

syndecan-1 than females [65]. Circulating levels of syndecan-4

have been associatedwith incidentmyocardial infarction, and

the association is stronger in women than inmen [117]. These

data imply either an increase in the amount of glycocalyx, a

denser glycocalyx, or higher protease activity in male endo-

thelial cells [118]. Therefore, the mechanisms underlying sex

the differences in atherosclerosis progression and ischemic

cardiovascular diseasemay be explained by the sex difference

of the vascular endothelial glycocalyx.
Possible therapeutic targets on COVID-19
associated with the vascular endothelial
glycocalyx

Most of the patients in China receive antiviral therapy such as

ribavirin, lopinavir/ritonavir, and remdesivir [9,119,120].

Clinical trials using ivermectin, avigan, and remdesivir are

ongoing worldwide to clarify their effectiveness on COVID-19.

Furthermore, more recent clinical trials have tested the effi-

cacy of inhibition of TMPRSS2 by camostat mesylate, the re-

combinant form of human soluble ACE2 [121], monoclonal

antibodies against IL-6 receptor, and interferon-a 2b for the

treatment of patients with COVID-19. Convalescent plasma

transfusion has also been reported to be beneficial in the

treatment of critically ill patients with COVID-19 [122,123].

Anticoagulant therapy resulted in lower mortality in pa-

tients with sepsis-induced coagulopathy, as well as lower

mortality in COVID-19 patients with increased levels of D-

dimer. However, there were no overall benefits for patients

following the administration of lowmolecular weight heparin

for at least 7 days [124]. Thus, hypothesis-driven studies based

on the knowledge of the molecular details of virusecell

interaction are still crucial for the identification of therapeu-

tic targets to treat COVID-19 [125].

Degradation of the vascular endothelial glycocalyx signifi-

cantly increased endothelial cell uptake of nanoparticle ve-

hicles designed for drug delivery compared to the intact

glycocalyx [126]. Ultra-small gold nanospheres coated with

polyethylene glycol were successfully delivered intravenously

in the glycocalyx degradation mouse model [127]. These lines

of evidence suggest that vascular endothelial glycocalyx

dysfunction induced by SARS-CoV-2 may be targeted for

enhanced drug delivery, offering a new therapeutic approach

for COVID-19. In particular, the possibility of a therapeutic

approach focusing on vascular endothelial glycocalyx is

explored in this section as follows:

1) A disintegrin and metalloprotease 17 (ADAM17)

ADAM17 was initially described to specifically cleave the

precursor of TNF-a (pro-TNF-a) [128]. ADAM17 activity is

induced in sepsis, and leads to shedding of components of

leukocytes and endothelial cell tether machinery, facilitating

systemic inflammation [129]. It is already known that ADAM17
mage as a systemic inflammatorymicrovascular endotheliopathy
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can release the ectodomains of a diverse variety of

membrane-anchored cytokines, cell adhesion molecules, re-

ceptors, ligands, and enzymes. Since ADAM17 leads to shed-

ding of membrane-bound ACE2 and release of the soluble

extracellular domain of ACE2 [130], ADAM17 and other pro-

teases to do ACE2 shedding are expected to be valid as treat-

ments for patients with COVID-19 [131]. Of relevance,

ADAM17 is co-expressed with syndecan-1 and has been

shown to mediate syndecan-1 shedding in lung epithelial

cells, which may aggravate endothelial glycocalyx disorders

[132,133]. Thus, careful consideration should be given to an

ADAM17-related therapy, which is expected to shed

membrane-bound ACE2, for COVID-19 patients.

2) Glycocalyx administration

Vascular endothelial glycocalyx has cardiovascular pro-

tective effects. Since it has been shown to protect against

myocardial edema in a rat model [134], investigators have

expected that intravenous administration of glycocalyx may

improve damage to the vascular endothelial glycocalyx [135].

Restoring the vascular endothelial glycocalyx by infusion of

the combination of hyaluronan and chondroitin sulfate was

confirmed in an animal model [136]. The effectiveness of

administration of glycocalyx to restore the vascular endo-

thelial glycocalyx was examined using hyaluronan and

chondroitin sulfate [137]. However, a similar effect has not yet

been confirmed in COVID-19 patients.

3) Inhibitors of glycocalyx sheddase

Heparanase inhibitor: A protein heparinase inhibitor,

PG545 plays a deleterious role in the development of renal

injury and kidney dysfunction, attesting heparinase inhibition

as a therapeutic approach for acute kidney disease [138,139].

MMP inhibitors: Matrix metalloprotease (MMP) inhibitors

have both pro-adhesion effects, by reducing sheddase activity,

and anti-adhesion effects by inhibiting glycocalyx shedding

and subsequent exposure of adhesion molecules on the

endothelial cell surface [140].

Sulodexide: A heparin sulfate-like compound resistant to

degradation by heparase, sulodexide can accelerate endo-

thelial glycocalyx regeneration in vitro and in vivo. Type 2

diabetes is associated with glycocalyx perturbation and

increased vascular permeability, which are partially restored

following sulodexide administration in these patients [53].

4) Anti-inflammatory mediators

Numerous anti-inflammatory mediators, such as TNF-a or

its receptor inhibitor (etanercept) [37], allopurinol [38],

sphingosine-1 phosphate (S1P) [89], and hydrocortisone, have

been shown to have protective roles on the vascular endo-

thelial glycocalyx [141]. Since these substances are expected to

have anti-inflammatory and anti-oxidative effects, which

impair vascular endothelial glycocalyx, they affects not only

vascular endothelial cells but also vascular endothelial gly-

cocalyx composition.

5) Fresh frozen plasma and albumin [142,143]
Please cite this article as: Yamaoka-Tojo M, Endothelial glycocalyx da
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The simplest way to achieve protection of the endothelial

glycocalyx is to maintain a sufficiently high concentration of

plasma proteins [20]. Indeed the early and empiric use of fresh

frozen plasma in hemodynamically unstable patients with

bleeding has led to a decrease in early hemorrhagic deaths

[144,145]. Endothelial dysfunction not only leads to coagula-

tion abnormalities, but also to inflammation and the break-

down of organ-specific endothelial and epithelial barrier

integrity [146]. Fresh frozen plasma reduced lung inflamma-

tion and injury in a rodent model of hemorrhagic shock that

was correlated with restitution of syndecan-1 [147]. Together,

these observations suggest that after hemorrhagic shock,

TNF-a induces syndecan-1 shedding in an ADAM17-

dependent manner, which is inhibited by fresh frozen

plasma [146].

6) Stem cell therapy

Cell-based approaches primarily using mesenchymal stem

cells, have demonstrated safety and possible efficacy in pa-

tients with ARDS [148]. Intravenous administration of clinical-

grade human mesenchymal cells into patients with COPD-19

was also shown to improve functional outcomes [149].

7) Antioxidant

Shedding of the vascular endothelial glycocalyx is triggered

by redox stress encountered during reperfusion, and there-

fore, should be alleviated by the radical scavenger NO. The

cardioprotective effect of NO in post-ischemic reperfusion

includes the prevention of coronary vascular leak and inter-

stitial edema, as well as a tendency to forestall both no-reflow

and degradation of the endothelial glycocalyx [150]. In theory,

antioxidants seem to be a therapeutic option for COVID-19;

however, the results of various large-scale clinical trials to

date suggest that this would be difficult to induce. The reason

being that many antioxidants lose their effectiveness imme-

diately after administration, and may affect the redox regu-

latory control necessary to maintain homeostasis.

8) Ivermectin

Ivermectin, an FDA-approved anti-parasitic previously

shown to have broad-spectrum antiviral activity in vitro, in-

hibits the replication of SARS-CoV-2 in vitro [151]. The previ-

ous study revealed that ivermectin is a specific inhibitor of

importin a/b-mediated nuclear importable to inhibit replica-

tion of HIV and dengue virus [152]. It has already reported that

ivermectin can improve the prognosis of patients with COVID-

19, and ivermectin is currently considered to be one of the

drugs with the highest potential.

9) Antithrombin III [153]

Antithrombin III is a physiological inhibitor of serine pro-

teases (e.g., thrombin, elastase), which inhibits coagulation

abnormalities and reduces inflammatory responses [154]. The

combination of antithrombin III and hydrocortisone has also

been reported to be effective. However, randomized control

trials of Antithrombin III are not sufficient, and further trials
mage as a systemic inflammatorymicrovascular endotheliopathy
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with prespecified inclusion criteria and good bias protection is

needed [154].

10) Sevoflurane

Sevoflurane is a modulator of the inflammatory response

triggered by ischemia-reperfusion lung injury [155,156]. Sev-

oflurane protects the lung endothelial glycocalyx in an in vivo

lung auto-transplant model in pigs, and reduces the expres-

sion of leukocyte on the vessels [157]. These data may explain

the beneficial outcomes linked to clinical use of volatile an-

esthetics after ischemia-reperfusion.

11) Intravenous immunoglobulin (IVIG)

IVIG is the standard treatment for Kawasaki disease. IVIG

should be started within 7 days from the onset of fever in high

suspicious patients for Kawasaki disease with COVID-19 [158],

because coronary artery aneurysms could occur in up to 25%

of children with Kawasaki disease without timely treatment

[159]. IVIG is used to neutralize bacterial super-antigens and

other infectious agents, inhibit the production of proin-

flammatory cytokines, neutralize pathogenic autoantibodies,

enhance regulatory T cells (as well as inhibit other T cells),

inhibit differentiation of Th17 cells, and reduce excessive ROS

[93]. However, IVIG is ineffective in approximately 15% of

children with Kawasaki disease, and insufficient control of

monocyte suppression and T-cell activation, especially in

terms of the CD8-T cells, are associated with IVIG resistance

[160]. Given the pathological treatment of Kawasaki disease,

IVIG treatment should be considered as an effective thera-

peutic option for severe COVID-19.

12) Tranexamic acid

The serine protease inhibitor, tranexamic acid, may pre-

vent degradation of the glycocalyx. The effect of tranexamic

acid administration on stress-related vascular endothelial

glycocalyx damage has been examined in human umbilical

vein endothelial cells (HUVECs) [161], inwhich it was shown to

prevent vascular endothelial glycocalyx degradation via in-

hibition of endothelial sheddase activation of ADMA17 and

MMP-9 in vitro.

13) Antihyperglycemic agents

Empagliflozin has been reported to restore the integrity of

the endothelial glycocalyx in cultured human abdominal

aortic endothelial cells treated with heparinase III-mediated

glycocalyx disruption [162]. Although Empagliflozin is known

to reduce cardiovascular events, the mechanism is still un-

clear. Therefore, a clinical study with the treatment of COVID-

19 associated with vascular endothelial glycocalyx should be

performed.

A traditional anti-diabetic drug, metformin, has been

demonstrated to have a protective role in cardiovascular dis-

ease. In db/dbmice, 2 weeks of metformin administration has

been shown to improve obesity and diabetes-induced glyco-

calyx damage and hydration of the heart and kidney [163].
Please cite this article as: Yamaoka-Tojo M, Endothelial glycocalyx da
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Summary and future outlook

To summarize, the vascular endothelial glycocalyx could

explain the features of critical patients with COVID-19.

1) The vascular endothelial glycocalyx is perturbed by SARS-

CoV-2 infection-induced inflammation, as well as in pa-

tients with hypertension, obesity, diabetes, cardiovascular

disease, and who are current smokers.

2) SARS-CoV-2 can more easily infect the endothelial

glycocalyx-damaged microvasculature in elderly people

compared toyoungpeople, and inmalesmodethanfemales.

3) Damage to the vascular endothelial glycocalyx leads to a

rapid worsening of ARDS, microvascular thrombosis/DIC,

Kawasaki disease shock syndrome, and may lead to

arrhythmia and sudden death. Circulating levels of glyco-

calyx (e.g., syndecan-1 and hyaluronan) may be effective

biomarkers to detect worsening signs earlier.

The composition of the vascular endothelial glycocalyx

affects all aspect of severe COVID-19, including high risks of

SARS-CoV-2 infection in the damaged endothelial glycocalyx,

perturbed endothelial glycocalyx-induced microvascular

leakage, thrombosis formation, excessive inflammatory

cytokine release, leukocyte activation, platelet adhesion to the

endothelium, and excessive ROS production [Fig. 2].

The COVID-19 pandemic has fundamentally changed our

lives. Many cities are, or have been locked down, with people

forced to stay at home and avoid contact with others. All

unnecessary activities are encouraged to stop, and even

educational and labor opportunities have been impacted by

this infectious disease. We believe that the world will have to

change as opposed to be restored to its previous state. Greater

understanding of the virus will allow us to devise ways in

which we can collectively survive the next “new-normal” era.

Although the endothelial glycocalyx is a classical physical

barrier common to many living creatures, this field has been

poorly studies thus far. Given the international nature of the

virus, we believe that it is necessary to share the latest

knowledge from new research areas to offer the novel concept

regarding the impact of vascular endothelial glycocalyx on

COVID-19 to other researchers.
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