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Introduction

Despite its recognition as a key component of blood clots, the roles of fibrinogen and fibrin 

(collectively fibrin[ogen]) in hemostasis and thrombosis are insufficiently understood. 

Consequently, fibrin(ogen) remains an active focus of investigation at all levels of the 

research spectrum, including fundamental basic/discovery science, epidemiology, and 

clinical practice and applications. This article briefly reviews basic biology and biochemistry 

of fibrinogen and fibrin formation, structure, and stability, and highlights recent studies 

published in Arteriosclerosis, Thrombosis, and Vascular Biology and elsewhere. These have 

enhanced our understanding of fibrin(ogen) and revealed new potential applications for 

fibrin detection in thrombosis.

Fibrinogen biology and structure

The fibrinogen molecule is a 340-kDa homodimeric glycoprotein consisting of 2Aα, 2Bβ, 

and 2γ polypeptide chains linked by 29 disulfide bridges. Fibrinogen synthesis occurs 

primarily in hepatocytes (Figure 1). Assembly of the six chains takes place in a step-wise 

manner in which single chains assemble first into Aα-γ and Bβ-γ complexes, then into Aα/

Bβ/γ half-molecules, and finally into hexameric complexes (Aα/Bβ/γ)2 (reviewed in1). All 

six fibrinogen chains are assembled with their N-termini located in a central “E nodule,” and 

extend outward in a coiled-coil arrangement. The Bβ and γ chains terminate in globular 

regions known as βC and γC modules, respectively. These regions collectively comprise the 

so-called “D nodule.” The Aα chains are the longest; at the end of the coiled-coil region 

each chain extends into a highly-flexible series of repeats followed by a globular αC region. 

Using high-resolution atomic force microscopy, Protopopova et al obtained striking images 

of fibrinogen that visualize each of these structural components.2
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In healthy individuals, fibrinogen circulates in plasma at high concentrations (2–5 mg/mL). 

However, fibrinogen is an acute phase protein, and during acute inflammation, plasma 

fibrinogen levels can exceed 7 mg/mL. The fibrinogen chains are encoded in three genes that 

are thought to have arisen through gene duplication. Mechanisms that regulate expression of 

the fibrinogen genes are still largely undetermined. Genome-wide association studies have 

identified single nucleotide polymorphisms within the fibrinogen genes3, as well as loci 

distinct from fibrinogen that implicate transcription factors (e.g., hepatocyte nuclear factors 

1 and 4 [TCF1 and HNF4], signal transducer and activator of transcription 3 [STAT3])3–5 

and inflammatory signaling pathways downstream of interleukin-65 in fibrinogen gene 

expression. In addition, microRNAs (miR) in the hsa-miR-29 family and hsa-miR-409-3p 

down-regulate fibrinogen expression in hepatoma cells in vitro6, revealing mechanisms that 

may fine-tune fibrinogen levels in response to environmental cues.

Fibrin formation, structure, and stability

During coagulation, fibrinogen is converted into insoluble fibrin (Figure 1). Fibrin formation 

involves thrombin-mediated proteolytic cleavage and removal of N-terminal fibrinopeptides 

from the Aα and Bβ chains. Insertion of these newly-exposed α- and β- “knobs” into a- and 

b- “holes” in the γC and βC regions of the D nodule, respectively, on another fibrin 

monomer permits the half-staggered association of fibrin monomers into protofibrils. 

Subsequent aggregation of protofibrils into fibers yields a fibrin meshwork that is essential 

for blood clot stability. This process has been extensively reviewed.7–11

Clot formation, structure, and stability are strongly influenced by the conditions present 

during fibrin generation. These include the concentrations of procoagulants, anticoagulants, 

fibrin(ogen)-binding proteins, molecules12–20, and metal ions21,22, as well as contributions 

of blood and vascular cells, and cell-derived microvesicles23–30, and presence of blood 

flow31,32 (Figure 2). Many of these mechanisms have been reviewed.33,34

The contribution of thrombin concentration to fibrin formation and structure has received 

considerable attention. High thrombin concentrations produce dense networks of highly-

branched fibrin fibers, and these clots are relatively resistant to fibrinolysis. In contrast, low 

thrombin concentrations produce coarse networks of relatively unbranched fibrin fibers, and 

these clots are relatively susceptible to fibrinolysis.12,17,35,36 Most studies have reported that 

compared to fibers formed from low thrombin concentrations, fibers generated by high 

thrombin concentrations are thinner. However, turbidimetry and microscopy studies of fully 

hydrated clots suggest high thrombin concentrations decrease the average protofibril content 

per fiber but only slightly decrease fiber size, leading to a generally less compact fiber.37 

Thus, the substantially thinner fibers observed at high thrombin concentrations in earlier 

studies may reflect fiber compaction or shrinkage that occurs during dehydration. 

Regardless, the association of fibrin clot structural parameters with clinical pathologies – 

dense networks of thinner/compact fibers with increased thrombotic risk38–40 and coarse 

networks of thicker/less compact fibers with increased bleeding risk36,41 – suggests fibrin 

structure is a critical determinant of hemostasis and thrombosis.
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Endogenous mediators of thrombin generation and fibrin

Multiple mechanisms mediate thrombin generation and consequently, the thrombin 

concentration present during fibrin formation. First, the levels of pro- and anticoagulants 

present during coagulation strongly influence procoagulant activity. For example, elevated 

levels of prothrombin are associated with increased thrombin generation35,42, formation of 

dense fibrin networks35, and increased venous thrombus weight in mice43. These studies, 

designed to model the clinical situation in humans with the G20210A prothrombin mutation 

associated with increased circulating prothrombin levels44, suggest increased thrombin 

generation enhances venous thrombosis risk in part by promoting abnormal fibrin deposition 

and structure. Second, the location of thrombin generation impacts fibrin network formation. 

Effective assembly and activity of the prothrombinase complex (factors Xa, Va, and 

prothrombin) requires a lipid surface.45 Localization of prothrombinase on a cell surface 

establishes a thrombin concentration gradient that influences both fibrin formation and 

network structure. In vitro experiments employing in situ thrombin generation on fibroblasts 

and endothelial cells reveal a significantly denser fiber network proximal versus distal to the 

cell surface.29 These structural differences give rise to substantially different fibrinolytic 

susceptibilities in different regions of the clot; fibrin located near the cell surface is 

significantly more resistant to lysis than fibrin located distal to the cell surface.29 Third, 

blood flow (shear) present during fibrin formation influences local thrombin concentrations 

by (re)supplying procoagulant proteins and removing activated enzymes (reviewed in46). 

Flow also aligns fibrin fibers31,32, which may have profound effects on fibrin formation and 

mechanical and fibrinolytic stability47. Furthermore, the shear rate affects clot formation 

triggered on tissue factor- plus collagen-coated plates, resulting in different fibrin deposition 

in different regions of a thrombus.48 Nanoindentation analysis to evaluate clot biophysical 

properties shows this fibrin distribution pattern determines clot microelasticity, which may 

impact thrombus stability and risk of embolization.48 Fourth, thrombin movement through 

the thrombus is substantially influenced by solute transport mechanisms mediated by cell 

packing density; this may also influence the amount of fibrin deposition in different regions 

of the clot.49

Effects of antithrombotic and hemostatic agents on fibrin

Given the prominent role of thrombin concentration in determining fibrin network formation 

and structure, it is not surprising that antithrombotic agents that reduce thrombin activity 

reduce fibrin deposition and consequently, thrombus formation. Since factor XI (FXI[a]) 

augments thrombin generation, in part by synergizing tissue factor-mediated procoagulant 

activity50, FXI inhibition strategies to reduce thrombosis have received considerable 

attention (reviewed in51). These approaches include conventional anti-FXI inhibitory 

antibodies, as well as technology in which antisense oligonucleotides (ASOs) result in the 

specific degradation of a target mRNA and corresponding reduction in target protein level. 

These studies reveal surprisingly specific effects of FXI inhibition in models of thrombosis 

and bleeding. Pharmacologic FXI inhibition does not reduce local platelet adhesion in tissue 

factor and collagen-coated capillary tubes, but reduces platelet activation and aggregation 

downstream of the growing thrombus.52 Similarly, in an arteriovenous shunt model of 

thrombosis in non-human primates, neither anti-FXI antibodies nor ASOs alter platelet 
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deposition on a collagen-rich segment of graft, but both decrease thrombus propagation 

(platelet accumulation and fibrin deposition) downstream of the collagen-rich region.53,54 A 

promising phase I clinical trial demonstrated success of anti-FXI ASO treatment in humans 

undergoing elective total knee arthroplasty; ASO-mediated reduction of plasma FXI levels 

decreased symptomatic or asymptomatic venous thrombosis/thromboembolism (VTE) 

incidence, and the higher ASO dose tested was superior to enoxaparin.55 In addition to its 

role in VTE, FXI also appears to contribute to atherogenesis in mice. Mice with deficiency 

in apolipoprotein E (Apoe−/−) spontaneously develop atherosclerotic lesions, but Apoe−/− 

mice with genetic FXI deficiency show reduced atherosclerosis progression.56 Moreover, 

anti-FXI ASO treatment reduces thrombus formation and fibrin deposition in a model of 

plaque rupture in Apoe−/− mice.57 Thus, FXI inhibition may also be effective for reducing 

arterial thrombosis in humans. Notably, FXI reduction has not been associated with 

increased bleeding in any of these studies, suggesting FXI antagonism may be safer than 

current antithrombotics. However, given that bleeding occurs in a subset of patients with 

FXI deficiency58,59 and the finding of altered structure and stability of plasma clots from 

these patients60, the safety of FXI inhibition should be carefully monitored in future trials. 

Regardless, these findings collectively support continued efforts to investigate and advance 

FXI inhibition strategies into the clinic.

Heparin and heparin-like compounds are used to prevent thrombosis, presumably due to 

their ability to reduce thrombin activity. However, heparin binds to the central E nodule of 

fibrin61, and both unfractioned heparin and low molecular weight heparin can also directly 

alter fibrin structure in an antithrombin-independent manner.62 Observed changes include 

effects on fibrin fiber thickness, as well as porosity. These changes are not observed with the 

pentasaccharide, fondaparinux. Demonstration of these direct effects of unfractioned heparin 

and low molecular weight heparin on fibrin structure suggest tests that assess efficacy based 

solely on thrombin inhibition may not fully capture therapeutic effects of these drugs. Global 

assays that assess both thrombin generation and fibrin formation63 may more closely reflect 

therapeutic effects of these drugs.

The common heparin reversal agent, protamine, also modulates fibrin network structure and 

stability. Protamine interacts directly with fibrinogen and is incorporated into clots, resulting 

in the production of thicker fibrin fibers in clots that are more susceptible to fibrinolysis.64 

Recently, Kalathottukaren et al characterized a synthetic polycation they termed universal 

heparin reversal agent (UHRA), as an alternative to protamine. UHRA can neutralize both 

heparin anticoagulant activity and polyphosphate procoagulant activity without the off-target 

effects on fibrin quality observed with protamine.64 Further studies to evaluate the 

therapeutic potential of UHRA are anticipated.

Effect of cells and cell components on fibrin formation, structure, and 

stability

Clot quality is heavily influenced by cells and cell-derived components present at the injury 

site.23–30 Recent studies have revealed previously unrecognized effects of red blood cells 
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(RBCs) and neutrophil extracellular traps (NETs) on fibrin formation, structure and stability. 

These may have substantial implications for understanding coagulation disorders.

RBCs are present in hemostatic and thrombotic clots, but their ability to influence clot 

formation or function have been unclear. RBCs can support thrombin generation65–67 and 

thereby alter procoagulant activity at the site of clot formation. The presence of RBCs 

during clot formation also increases fibrin network heterogeneity, but whether RBCs 

increase28 or decrease27 fibrin fiber thickness is unclear. Once in the clot, RBCs alter clot 

viscoelastic properties28 and by reducing plasminogen activation, increase resistance of clots 

to fibrinolysis27. Effects of RBCs on fibrin structure are reduced in the presence of 

eptifibatide, suggesting these effects are modulated in part by an interaction between 

fibrin(ogen) and a cell surface integrin.27 This observation is consistent with observations 

suggesting fibrin(ogen) binds to RBCs via a β3-like molecule on the RBC surface68, 

although neither the fibrin(ogen) binding site, nor the putative RBC receptor, have been 

identified. Studies of contracted whole blood clots show profound compression of resident 

RBCs into structures termed “polyhedrocytes.”25,69 Adoption of this tight packing 

arrangement reduces clot permeability and may explain the resistance of older, compact 

clots to thrombolysis.25

NETs are composed of DNA, histones, and antimicrobial proteins and have surfaced as an 

intriguing link between inflammation and coagulation. NETs can be detected within venous 

thrombi70, and levels of cell-free DNA (CFDNA) in plasma are increased in patients with 

deep vein thrombosis, suggesting NETs contribute to thrombosis pathogenesis.71 However, 

specific effects of NETs and NET components on coagulation are complex. Briefly, NETs 

can interact with cells and coagulation factors and influence their activation and activity. 

NET components promote thrombin generation by activating the intrinsic pathway of 

coagulation and by inducing platelet-dependent mechanisms in toll-like receptors-2 and -4-

dependent mechanisms.72–74 Histones also enhance activated protein C generation by 

thrombin/thrombomodulin in vitro and in mice.75 By altering these procoagulant and 

anticoagulant pathways, NETs may alter local thrombin levels and indirectly alter fibrin 

formation and quality. In vitro studies suggest CFDNA promotes formation of densely-

packed networks of thick fibrin fibers.74 This observation is interesting, given that dense 

fibrin networks are more typically associated with decreased fiber thickness/compaction. 

Thus, this finding suggests CFDNA, like its highly-charged cousin polyphosphate, 

modulates fibrin structure at least partly through a direct interaction with fibrin(ogen). In 

addition, clots formed in the presence of CFDNA exhibit delayed fibrinolysis via a 

mechanism that involves a CFDNA-dependent reduction in plasmin fibrinolytic activity.74 

These effects may have substantial clinical implications. For example, CFDNA levels are 

elevated in patients with sepsis, and the effects of CFDNA on fibrin structure and 

fibrinolysis are also observed in plasmas from sepsis patients.74,76 The role of NETs and 

potential utility of DNA-dissolving treatment (e.g., DNase) remains an active area of 

investigation.
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Alternatively-spliced fibrinogen

Multiple alternatively-spliced forms of fibrinogen can be detected in plasma. Of these, an 

alternatively-spliced form of the γ chain (γ′) is the most prevalent and has received the most 

attention. The γ′ chain has the final 4 amino acids of the native γ chain replaced with 20 

amino acids that add substantial negative charge.77–79 Molecules containing the γ′ chain 

circulate as a heterodimer with the γA chain (2Aα, 2Bβ, and γA/γ′) and comprise 8–15% 

of total fibrinogen in healthy individuals.79,80

Epidemiologic studies have associated altered arterial and venous thrombosis risk with the 

level of circulating γA/γ′ fibrinogen. For example, elevated levels of γA/γ′ fibrinogen have 

been associated with increased incidence of coronary artery disease81, myocardial 

infarction82, and ischemic stroke83, leading to the hypothesis that γA/γ′ fibrinogen 

promotes arterial thrombosis. However, a recent prospective study showed that while γA/γ′ 
fibrinogen is associated with increased incidence of cardiovascular disease (CVD), 

peripheral arterial disease, and heart failure, this association is lost when the analysis is 

adjusted for total fibrinogen and C-reactive protein.84 Thus, the association of elevated 

fibrinogen with these pathologies may be mediated, at least in part, by a co-existing 

inflammatory reaction. In contrast, reduced levels of γA/γ′ fibrinogen and decreased γ′-to-

total fibrinogen ratio have been fairly consistently associated with increased risk of VTE85 

and thrombotic microangiopathy86. These findings suggest γA/γ′ fibrinogen is protective 

against venous thrombosis, and raise interesting questions about the operant mechanism.

In vitro studies investigating the relative role(s) of the fibrinogen isoforms during clot 

formation indicate both γA/γA and γA/γ′ isoforms are incorporated into the fibrin 

network; however, the γA/γ′ isoform has unique properties that modify its role during 

clotting and subsequently, the function of the fibrin clot. Studies have generally reported 

thinner fibrin fibers in clots containing the γA/γ′ isoform and associated this effect with 

increased resistance to fibrinolysis.87,88 However, Domingues et al detected reduced packing 

of γA/γ′ molecules in fully-hydrated protofibrils, suggesting reduced packing results in the 

appearance of decreased fiber diameter in dehydrated clots.37 Moreover, in contrast to clots 

formed by γA/γA fibrinogen, characteristics of fibers formed by γA/γ′ fibrinogen are 

relatively unaffected by the thrombin concentration.37

The γA/γ′ isoform supports high-affinity binding to thrombin exosite II89,90 that led to its 

recognition as “antithrombin I.” Thrombin binding to the γ′ chain competitively inhibits 

thrombin-mediated platelet activation91, reduces thrombin-mediated fibrinopeptide B 

cleavage92, and decreases factor VIII93 and V94 activation. In in vitro microfluidic models, 

γA/γ′ fibrinogen reduces clot growth primarily at venous, but not arterial, wall shear rates, 

suggesting the impact of its antithrombin I activity depends in part on the location of the 

thrombotic event (vein or artery).94 Studies with mice have documented antithrombotic 

effects of γA/γ′ in models of both venous and arterial thrombosis. Expression of the human 

γA/γ′ fibrinogen isoform in mice that are heterozygous for the factor V Leiden mutation 

reduces thrombus volume following electrolytic injury to the femoral vein.95 In a model of 

FeCl3-induced carotid artery injury, healthy mice infused with unfractionated human 

fibrinogen have a shortened time to vessel occlusion, and this effect is recapitulated by 
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infusion of γA/γA, but not γA/γ′, fibrinogen. Although γA/γ′-infused mice are not 

protected against thrombus formation in this model, they do have lower levels of circulating 

plasma thrombin-antithrombin complexes compared to γA/γA-infused mice, consistent 

with increased thrombin-binding capacity of γA/γ′ fibrin(ogen).96 Collectively, these 

studies suggest γA/γ′ has generally antithrombotic roles during coagulation and its 

expression may serve to downregulate inflammation-induced prothrombotic activity.

Fibrin crosslinking

Covalent crosslinking of fibrin chains is a critical determinant of fibrin stability. 

Crosslinking is mediated predominantly by transglutaminase factor XIII (FXIII) found in 

plasma and platelets. Plasma FXIII is a 320-kDa heterotetrameric zymogen (FXIII-A2B2) 

composed of two catalytic subunits (FXIII-A2) tightly-associated (Kd~10−10 M)97 with two 

non-catalytic subunits (FXIII-B2). FXIII-A2B2 circulates at ~70 nM (14–28 μg/mL)98 in 

complex with fibrinogen. Although early data suggested FXIII-A2B2 preferentially binds the 

alternatively-spliced fibrinogen γ′ chain, more recent studies have localized binding to γ-

chain residues 390–396 with additional contributions from the Aα-chain.99–101

Catalytically-active FXIII (FXIIIa) induces ε-N-(γ-glutamyl)-lysyl crosslinks between 

glutamine and lysine residues on fibrin γ- and α-chains, yielding γ-γ dimers and high 

molecular weight (HMW) species (γ-multimers, α-polymers, and αγ-hybrids). FXIII can 

also crosslink other plasma proteins (e.g., α2-antiplasmin, fibronectin) to fibrin. Covalent 

crosslinking of α2-antiplasmin to fibrin prevents expulsion of α2-antiplasmin from the clot 

during clot compression or contraction102 and is essential for clot stability. For example, in a 

mouse model of middle cerebral artery occlusion in which plasma clots formed ex vivo are 

placed into α2-antiplasmin-deficient mice, clots made from α2-antiplasmin sufficient plasma 

are more resistant to dissolution than clots made from α2-antiplasmin-deficient plasma.103 

The importance of FXIIIa-mediated crosslinking for clot stability has been reviewed.104–106

Recently, we discovered that FXIIIa-mediated fibrin crosslinking also promotes RBC 

retention in clots, exposing a newly-recognized role for this activity during VTE.99,107 

Briefly, compared to FXIII-sufficient mice (F13a+/+), FXIII-deficient (F13a−/−) mice 

produce thrombi that have reduced RBC retention and consequently, are smaller.99 This 

effect of FXIII on RBC retention in clots is mediated specifically by fibrin α-chain 

crosslinking.107

The timing of fibrin crosslinking also appears to be integral to RBC retention in clots. Mice 

that have reduced binding of FXIII to fibrinogen and delayed FXIII activation and fibrin 

crosslinking (Fibγ390–396A) show significantly decreased RBC retention and thrombus size, 

similar to that seen in F13a−/− mice.99 Interestingly, the FXIII Val34Leu polymorphism that 

exhibits accelerated FXIII activation, paradoxically conveys moderate protection against 

VTE by modulating clot structure in a fibrinogen concentration-dependent manner.108 These 

interesting and apparent paradoxical findings raise important and clinically-relevant 

questions regarding the role of FXIII activation kinetics and fibrin crosslinking in 

thrombosis. Duval et al tested the contribution of the Val34Leu polymorphism to thrombus 

formation in mice.109 Despite observing increased FXIII activation and crosslinking in vitro 
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and in vivo, F13a−/− mice infused with recombinant FXIII-Leu34 showed no difference in 

thrombus size compared to FXIII-Val34-infused mice in the FeCl3 model of femoral vein 

thrombosis.109 These data suggest the Leu34 variant does not alter thrombus size; however, 

since FeCl3 injury induces rapid formation of platelet-rich thrombi, effects of the Val34Leu 

polymorphism on the slow process of RBC- and fibrin-rich venous thrombus formation 

remain unknown. Further investigations on the contribution of the FXIII Leu34 

polymorphism to fibrin formation and thrombosis are warranted.

Clot contraction

An essential function during coagulation is the platelet-mediated consolidation of clots in a 

process known as clot contraction (or retraction). This process involves fibrin(ogen) binding 

to platelet integrin receptor αIIbB3 and is influenced by both platelet and fibrin(ogen) 

concentrations.110 Although recognized as a fundamental process during coagulation, clot 

contraction has received little attention, particularly in a clinical setting. This gap is 

noteworthy given findings that associate platelet aggregation and clot contraction with 

decreased clot permeability and increased resistance to fibrinolysis, two parameters thought 

to impact thrombosis risk.25,111 Tutwiler et al evaluated the kinetics of clot contraction in 

blood samples collected from patients with recent acute ischemic stroke, and correlated 

parameters with hemostatic and hematological laboratory characteristics.69 Surprisingly, 

compared to clots from healthy individuals, whole blood clots from patients with recent 

ischemic stroke exhibit reduced clot contraction.69 However, since samples were collected 

after symptom onset, these changes may reflect a consequence, rather than cause, of the 

thrombotic event. Ischemic stroke patients had quantitative and qualitative defects in 

circulating platelets (decreased platelet count, shape change and P-selectin exposure in 

unstimulated platelets, and decreased fibrinogen-binding capacity of activated platelets)69, 

suggesting the ischemic event may consume platelets and/or induce a refractory phenotype 

in circulating platelets that are not incorporated into the thrombus. Prospective analysis of 

blood samples prior to stroke onset is necessary to determine if altered contraction promotes 

occlusive thrombus formation.

Abnormal fibrinogen and fibrin structure in thrombosis

Production of clots with abnormal structure and stability has been demonstrated in plasma 

samples from patients with increased CVD risk.38–40 Following percutaneous coronary 

intervention, patients who develop in-stent thrombosis demonstrate abnormal plasma clot 

characteristics (e.g., permeability, turbidity, lysis time) compared to patients who did not 

develop in-stent thrombosis.112 Similarly, compared to healthy controls, plasma clots from 

patients with abdominal aortic aneurysm have more densely-packed fibrin networks with 

smaller pores, and were more resistant to lysis.113 Moreover, effects are aneurysm-size-

dependent; patients with larger aneurysms have more densely-packed fibers compared to 

patients with smaller aneurysms.113 In both in-stent thrombosis and abdominal aortic 

aneurysm patients, these effects on clot properties are independent of total fibrinogen levels, 

but may be related to effects of other plasma proteins on fibrin formation.112,113 It remains 

unclear whether these fibrin clot abnormalities are only a biomarker for an operant 
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pathophysiologic mechanism, or whether abnormal fibrin clot structure is causative in the 

disease etiology.

Post-translational modifications of fibrinogen

Although genetic mutations in fibrinogen (congenital dysfibrinogenemia) have been 

associated with abnormal fibrin clot formation and bleeding and/or thrombosis (reviewed 

in114), acquired fibrinogen abnormalities are likely far more prevalent. The high 

concentration of fibrinogen in circulation makes it a frequent target of enzymes and 

activities that modify its structure and function. These post-translational modifications 

include nitration, homocysteinylation, and glycation, and are reviewed elsewhere.115

Importantly, fibrinogen modifications have been observed in plasma clots from individuals 

with increased cardiovascular risk. For example, cigarette smoking is associated with 

abnormal fibrinogen levels and is a major risk factor for CVD.116 A multi-ethnic cohort of 

current, former, and non-smokers, observed that current chronic smokers with a longer 

number of pack-years have fibrinogen levels higher than either former smokers or non-

smokers117, suggesting smoke exposure causes an acquired, but reversible, 

hyperfibrinogenemia that increases cardiovascular risk. Interestingly, even acute exposure to 

cigarette smoke is associated with the production of plasma clots with thinner fibrin fibers 

and increased platelet aggregation118 suggesting cigarette smoke exposure also induces 

immediate (post-translational) functional changes in fibrin formation and structure that 

promote thrombogenicity.118 Although the specific mechanisms were not determined, the 

authors speculated that free radicals (reactive oxygen species) present in cigarette smoke 

modify fibrinogen in circulation. Consistent with that premise, other studies have 

specifically associated oxidative modification of fibrinogen with CVD and increased 

thrombotic risk.119,120 Compared to age-, sex- and risk factor-matched controls, patients 

with post-acute myocardial infarction have elevated plasma markers of oxidative stress, 

including increased fibrinogen carbonylation. Moreover, fibrinogen isolated from these 

plasma samples demonstrates abnormal clotting characteristics, including the production of 

clots with thinner fibrin fibers.120 Fibrinogen carbonyl content correlates negatively with 

fibrin clot turbidity (a proxy for fibrin network structure) and positively with extent of fibrin 

β-chain remaining during fibrinolysis (a proxy for resistance to fibrinolysis).

Cirrhosis is also associated with elevated thrombosis risk, and fibrinogen isolated from 

patients with cirrhosis demonstrates carbohydrate modifications and increased carbonyl 

content.119,121 Compared to controls, both plasma clots and clots made from purified 

fibrinogen from cirrhotic patients demonstrate abnormal clotting characteristics, including 

decreased clot permeability and shorter clot lysis times.119 Somewhat paradoxically, patients 

included in this study119 reported bleeding, mostly variceal, rather than thrombosis. 

However, the more frequent association of the observed clot characteristics with thrombotic 

risk suggests abnormal clot structure ultimately contributes to thrombosis in these patients.

Patients with chronic kidney disease also have increased risk of thrombotic events. 

Fibrinogen purified from patients with chronic kidney disease on hemodialysis shows 

evidence of glycosylation and guanidinylation.122 Compared to fibrin clots from healthy 

controls, clots made with guanidinylated fibrinogen have significantly thinner, or perhaps 
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more compact, fibrin fibers. Notably, formation of denser fibrin networks was independently 

associated with mortality risk in the hemodialysis patients.122

Collectively, these findings implicate fibrin(ogen) modification in thrombosis associated 

with multiple pathologies. Additional studies are needed to demonstrate direct pathologic 

contributions of each of these modifications to fibrin(ogen) function in vivo.

Fibrin(ogen) detection as a diagnostic tool

VTE diagnosis includes imaging technologies such as Doppler ultrasound or computed 

tomography to detect deep vein thrombosis or pulmonary embolism, respectively.123,124 

These technologies show vascular abnormalities and flow disturbances around the thrombus, 

but do not reveal information about thrombus composition. Development of technologies 

that can detect thrombus composition may have clinical utility. Notably, whereas early 

thrombi have substantial crosslinked fibrin content, this fibrin is replaced with collagen 

during thrombus resolution.125 Since fibrin-rich thrombi are more susceptible to fibrinolysis 

than collagen-rich thrombi126, distinguishing early, fibrin-rich thrombi from older, collagen-

rich thrombi may aid in identifying thrombi that are susceptible to fibrin-degrading 

thrombolytic therapy. Currently, assessment of thrombus age is highly-subjective and only 

poorly able to identify patients who may respond to thrombolytic treatment.126 However, 

two recent studies of thrombosis detection in rodents have advanced methods to detect 

intravascular thrombi and reveal information about thrombus fibrin content. Blasi et al 

demonstrated the ability of a fibrin-binding probe, 64Cu-FBP8, to detect both venous and 

arterial thrombi in a single whole-body positron emission tomography (PET) scan.127 Probe 

uptake correlated positively with fibrin content in both arterial and venous clots, 

distinguishing young (high probe uptake) from old (low probe uptake) thrombi.127 This 

PET-based imaging method enables imaging of multiple thrombi in one examination and 

may be a noninvasive and sensitive approach to assess changes in thrombus composition 

over time. Similarly, the spatial and temporal uptake of a gadolinium-based fibrin-specific 

MRI contrast agent, EP-2104R, also correlates positively with time-dependent changes in 

thrombus fibrin content.128 Furthermore, thrombi that exhibit high EP-2104R uptake are 

more susceptible to tissue plasminogen activator-mediated dissolution, suggesting EP-2104 

can be used to identify thrombi that are susceptible to thrombolytic therapy.128 Additional 

studies are warranted to determine if these methods can be used to identify human patients 

with greatest potential benefit of thrombolytic therapy.

Summary

This review has highlighted both established and newer findings on fibrin(ogen) expression 

and function that demonstrate its central role in clot formation during hemostasis and 

thrombosis. Additional studies beyond the scope of this review have exposed intriguing roles 

for fibrin(ogen) in inflammation, infection, neurologic disease, cancer, and other 

pathologies. Collectively, these discoveries have uncovered critical links between disease 

pathways and rationalize the significant association of many diseases with increased 

bleeding and/or thrombosis risk. Identification of these pathways may yield new therapeutic 

targets with enhanced specificity and safety. Consequently, efforts to advance both basic 
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research in fibrin(ogen) genetics, biology, biochemistry, and biophysics, as well as 

translational applications for fibrin(ogen) detection and altering fibrin(ogen) function are 

likely to have broad impact on health and disease.
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Figure 1. Fibrinogen synthesis and expression
Fibrinogen synthesis is regulated by both transcriptional and translational mechanisms. After 

individual fibrinogen chains are translated, fibrinogen assembly occurs step-wise. Single 

chains assemble first into Aα-γ and Bβ-γ precursors, then into Aα/Bβ/γ half-molecules, 

and finally into hexameric complexes (Aα/Bβ/γ)2. Once fibrinogen is released into blood, it 

circulates until thrombin cleaves fibrinopeptides from the Aα and Bβ chains (FpA and FpB, 

respectively) to form fibrin monomers. These monomers then polymerize in a half-staggered 

arrangement to form fibrin protofibrils and ultimately, the fibrin network at a site of tissue 

injury.
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Figure 2. Modifiers of fibrin(ogen) and association with disease
Clot formation, structure, and stability are influenced by conditions present during fibrin 

generation. Abnormal clot formation is observed in a number of diseases.
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