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Summary. Atherosclerosis is a multifactorial disease for which

the molecular etiology of many of the risk factors is still

unknown. As no single genetic marker or test accurately

predicts cardiovascular death, phenotyping for markers of

inflammation may identify the individuals at risk for vascular

diseases. Reactive oxygen species (ROS) are key mediators of

signaling pathways that underlie vascular inflammation in

atherogenesis, starting from the initiation of fatty streak

development through lesion progression to ultimate plaque

rupture. Various animal models of atherosclerosis support the

notion that ROS released from NAD(P)H oxidases, xanthine

oxidase, lipoxygenases, and enhanced ROS production from

dysfunctional mitochondrial respiratory chain indeed have a

causatory role in atherosclerosis and other vascular diseases.

Human investigations also support the oxidative stress hypo-

thesis of atherogenesis. This is further supported by the

observed impairment of vascular function and enhanced

atherogenesis in animal models that have deficiencies in

antioxidant enzymes. The importance of oxidative stress in

atherosclerosis is further emphasized because of its role as a

unifying mechanism across many vascular diseases. The main

contraindicator for the role oxidative stress plays in athero-

sclerosis is the lack of effectiveness of antioxidants in reducing

primary endpoints of cardiovascular death and morbidity.

However, this lack of effectiveness by itself does not negate the

existence or causatory role of oxidative stress in vascular

disease. Lackof provenmarkers of oxidative stress,which could

help to identify a subset of population that can benefit from

antioxidant supplementation, and the complexity and subcel-

lular localization of redox reactions, are among the factors

responsible for the mixed outcomes in the use of antioxidants

for the prevention of cardiovascular diseases. To better

understand the role of oxidative stress in vascular diseases,

future studies should be aimed at using advances in mouse and

human genetics to define oxidative stress phenotypes and link

phenotype with genotype.
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The role of oxidative stress in atherogenesis and
thrombosis

In all industrialized countries, including the USA, more deaths

result from cardiovascular disease (CVD) than from any other

cause. These diseases include coronary artery disease, hyper-

tension, congestive heart failure, and stroke, all of which are

complications of atherosclerosis. Atherogenesis is a complex

process, dependent on gene–environment interactions. The

search for commonalities has led many investigators to study

the role of inflammation in the initiation and progression of

atherosclerosis. Because no single genetic marker (or groups of

markers) or non-invasive test accurately predicts cardiovascu-

lar death, markers of inflammation have been touted as a

means to define a �phenotype� of the individual at risk.

However, vascular inflammation per se is no less complex

than atherosclerosis. The inflammatory process is impacted by

many cellular and humoral mediators. Although much is

known about the basic pathophysiological mechanisms of

atherogenesis, it is likely that a more detailed understanding

will lead to the development of more precise means to identify

individuals with atherosclerosis and their risk for death or

serious morbidity. In this review we focus on an important

component of vascular inflammation: the role of reactive

oxygen species (ROS) as mediators and markers of inflam-

matory reactions. It is increasingly evident that ROS initiate

key intracellular signals that dictate cellular responses to a

variety of stresses important in atherogenesis. We review the

role of ROS in these processes and the possibility that ROS

measurement may define a phenotype of individuals at risk for

cardiovascular complications.
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Atherosclerosis: an overview

In humans and animals, the earliest visible evidence of

atherosclerosis is the development of �fatty streaks� which over

time evolve into atheroma. Physiologicalmeasurements suggest

that even before fatty streaks are present, damage to the

endothelium by circulating mediators and physical forces can

result in endothelial dysfunction. Both endothelial dysfunction

and fatty streaks are present in a high percentage of preado-

lescent children in the USA and other industrialized countries

[1]. Fatty streaks are areas in the vessel wall that contain lipid

deposits, but contain a paucity of the cells and cellular debris

that characterize more advanced lesions. The transport of

oxidized low-density lipoprotein (LDL) across the endothelium

into the artery wall is necessary for the formation of fatty

streaks and this transport continues as more advanced lesions

develop [2,3]. Oxidized LDL (Ox-LDL) is important not only

for the formation of the fatty streak but also, along with a host

of other physical and/or humoral mediators, for damage to the

endothelium. The damaged endothelium allows for continued

transport of inflammatory cells and mediators into the vessel

wall and these processes generate ROS. Indeed, there is

growing evidence that endothelial cells, smooth muscle cells

(SMC), and macrophages are all sources of the ROS that

modify phospholipids and oxidize LDL. It is also clear that

ROS are involved in signaling vascular cell migration and

proliferation during the formation of atherosclerotic lesions. In

addition, it has been shown that the interaction of Ox-LDL

with the vessel wall results in increased expression of adhesion

molecules such as P-selectin [4], and chemotactic factors such as

monocyte chemoattractant protein-1 [5] and macrophage

colony-stimulating factor [6]. This expression leads to tethering,

activation and attachment of monocytes and T lymphocytes to

the endothelial cells [7]. Under the influence of growth factors

and chemoattractants secreted by endothelial cells, leukocytes

and SMC, monocytes and leukocytes migrate into the suben-

dothelial space [8]. In the presence of high concentrations of

LDL (both oxidized and non-oxidized), monocytes ingest

lipoproteins and become macrophages. ROS generated by

macrophages convert oxidized LDL into highly oxidized LDL,

which is taken up by these cells through scavenger receptors to

form foam cells—all resulting in what is a vicious cycle of

oxidation. Foam cells can coalesce with leukocytes, and these

two are the principle cells of the fatty streak. Once a fatty streak

is formed, unless the oxidative cycle is interrupted, the foam

cells that are present in the fatty streak will secrete growth

factors that induce SMC migration from the media into the

neointima. SMC proliferation coupled with continuous influx

and proliferation of monocytes and macrophages converts

fatty streaks to more advanced lesions and ultimately to a

fibrous plaque (Fig. 1). Fibrous plaques, by definition,

encroach on the arterial lumen, causing disturbed blood flow

and hemodynamic forces that further contribute to plaque

growth. Calcification can occur and fibrosis continues, yielding

a fibrous cap surrounding a lipid-rich core which may also

contain dying or dead SMC. In acute coronary syndromes,

fibrous plaques rupture and initiate thrombus formation that

results in vessel occlusion.

Oxidative stress and atherosclerosis

Oxygen is an abundant molecule in biological systems.

Although oxygen is a radical, it is sparingly reactive because

its two unpaired electrons, located in different molecular

orbitals, possess parallel spins. As a result, oxygen undergoes

univalent reduction to form superoxide (O5 �
2 ) by means of

enzymes such as the NADH, NAD(P)H and xanthine oxid-

ases. Superoxide can also be formed non-enzymically by the

reaction of oxygen with redox-active compounds, such as

semiubiquinone, which are involved in the mitochondrial

electron transport chain [10]. Superoxide anion is effervescent

and under normal circumstances it is dismutated enzymically to

hydrogen peroxide (H2O2) by the action of superoxide

dismutases (SODs) [11,12]. In biological tissues, O5 �
2 can also

undergo non-enzymic transformation into H2O2 and singlet

oxygen (1O2) [13]. H2O2 can react with other radicals such as

transition metal Fe2+ to produced highly reactive hydroxyl

radicals (Fenton reaction) capable of oxidative destruction of

biomolecules. Initial oxidation of O5 �
2 by Fe3+ generates

molecular oxygen and Fe2+; Fe2+ initiates the Fenton reaction

and regenerates Fe3+ to propagate the reaction [14]. The oxi-

dative potential of H2O2 can be amplified by myeloperoxidase,
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Fig. 1. An unstable arterial plaque and the mechanisms of plaque rupture

([9]; with permission from N Engl J Med]. Smooth muscle cell (SMC)

migration from the media into the intima, induced by the growth factors

secreted by foam cells, leads to the focal thickening of the intima and

formation of atherosclerotic plaque. SMC proliferation and the conse-

quent formation of connective tissue coupled with continuous influx and

proliferation of monocytes and macrophages lead to more advanced

lesions. Following calcification and continued fibrosis, a fibrous cap forms

around a lipid-rich core; this may contain dying or dead SMC. Ultimately,

the fibrous plaque protrudes into the arterial lumen. Reactive oxygen

species (ROS) from many sources, including NAD(P)H oxidases of SMC

and macrophages, cause necrosis of SMC. In acute coronary syndromes,

matrix metalloproteinases (MMP) from macrophages and T lymphocytes

digest collagen and cause thinning of the fibrous cap which eventually

results in plaque rupture and thrombus formation in the vessel.
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a heme protein secreted by phagocytes [15]. Hypochlorus acid

(HOCl) is the major oxidant generated by the myeloperoxi-

dase–H2O2–Cl
– system at physiological concentrations of Cl–

[16]. HOCl can react with O5 �
2 to produce 5OH [17].

O2 þ e� ! O5�
2 ½10�

2O5�
2 �!SOD

2H
H2O2 þO2½11; 12�

2O5�
2 þ 2Hþ ! 1O2 þH2O2½13�

O5�
2 þ Fe3þ ! O2 þ Fe2þ½14�

Fe2þ þH2O2 ! 5OHþOH� þ Fe3þ½14�

H2O2 þ Cl� þHþ
�������!Myeloperoxidase

HOCLþH2O½15; 16�

HOCLþO5�
2 ! 5OHþ Cl� þO2½17�

Oxidants are produced in eukaryotic cells in normal meta-

bolic events such as respiration and phagocytosis. In addi-

tion, low levels of ROS produced in response to growth

factors and cytokines are key components of cellular

metabolism. Cells have evolved both enzymic and non-

enzymic mechanisms to protect against the toxic effects of

oxidants. Enzymic mechanisms include SOD, catalase, and

glutathione peroxidase (GPx); the non-enzymic antioxidants

include glutathione, ascorbate, and a-tocopherol. Under

normal conditions both types of mechanisms operate together

to maintain homeostasis. However, under pathophysiological

conditions ROS production exceeds the scavenging capacity

of cellular antioxidant systems and the resultant oxidative

stress can damage the lipids, membranes, proteins and DNA

of the cell.

Modulation of ROS production in vascular cells

The NAD(P)H oxidase

Many different enzyme systems are involved in regulating ROS

production and degradation in vascular cells. The predominant

ROS-generating system in inflammatory cells, the membrane-

bound NAD(P)H oxidase, is a major source of O: �
2

generation in vascular cells as well. NAD(P)Hoxidase catalyzes

the reduction of molecular oxygen by transferring an electron

from the substrates NADH or NADPH.

NAD(P)Hþ 2O2�!NAD(P)þ þHþ þ 2O5�
2

NADPH differs from NADH in that the 2¢-hydroxyl group of

its adenosine moiety is esterified with phosphate. The prefer-

ence of the enzyme for the substrate is controversial. Our group

[18] and most others [19,20] have shown that NADH is the

preferred substrate, but some others [21] have reported that

NADPH-driven O5 �
2 generation predominates in vascular

SMC. However, the preference of the oxidase for either of the

substrates may depend on the methodology used to measure

O5 �
2 production and also on the cell type [22]. The NAD(P)H

oxidase of inflammatory cells generates a large burst of O5 �
2

that kills engulfed bacteria; however, the vascular cell

NAD(P)H oxidase differs, as described below, in the rate and

extent of its generation of O5 �
2 . The term �vascular NAD(P)H

oxidase� is used in this review in a comprehensive manner to

include low O5 �
2 -yielding oxidases present in vascular SMC,

endothelial cells and adventitial fibroblasts in contrast to the

high O5 �
2 -yielding neutrophil NAD(P)H oxidase. The vascu-

lar NAD(P)H oxidase has a similar, but distinct structure from

the phagocytic enzyme. The phagocytic oxidase contains

membrane-bound subunits gp91phox (Nox2) and p22phox,

the catalytic site of the oxidase and cytosolic components

p47phox, p67phox and G protein rac1 or 2 [23]. Endothelial

cells and adventitial fibroblasts possess all the components of

phagocytic oxidase [24–26]. The most important distinction

between phagocytic cells and vascular SMC is that the latter

have gp91phox homologs, NAD(P)H oxidase subunits Nox1

and Nox4 [27–30], and do not appear to possess p67phox [18].

Due to their differing structures, phagocytic oxidase and

vascular oxidase are active in different circumstances. The

vascular oxidase is active during normal metabolism; its

sustained activation occurs in response to agonists. Vascular

oxidase also produces less O5 �
2 , by several orders of magni-

tude, than does phagocytic oxidase [22]. Phosphorylation and

translocation of p47phox is one of the early steps in the

activation of the NAD(P)H oxidase [31].

Evidence for a critical role for NAD(P)H oxidase-derived

oxidative stress in atherosclerosis has come from both cell

culture studies and animal models of atherosclerosis.

NAD(P)H oxidase and O5 �
2 production is increased in

vascular cells by a variety of agonists relevant to the patho-

genesis, including angiotensin II, thrombin, platelet-derived

growth factor (PDGF), and tumor necrosis factor (TNF)-a
[18,32–34]. Temporal regulation of NAD(P)H oxidase also

occurs depending on the vascular flow conditions. Laminar

shear stress, which is atheroprotective, has been reported to

cause only a transient increase in the activity of the enzymewith

a compensatory increase in antioxidant defenses in human

umbilical vein endothelial cells. In contrast, atherogenic

oscillatory shear stress appears to cause a sustained increase

in oxidase activity [32]. In hypercholesterolemic rabbits prone

to atherosclerosis, increased NADH-dependent vascular O5 �
2

production, presumably related to the elevation of angiotensin

II levels, was associated with endothelial dysfunction [35].

AT1-receptor antagonists not only inhibited the oxidase and

improved endothelial function but also reduced early plaque

formation. These data suggest that oxidative stress plays a

crucial role in early stages of atherosclerosis.

In a different model, we have more directly demonstrated

that NAD(P)H oxidase-dependent O5 �
2 generation plays an

important role in atherosclerosis. We used ApoE(–/–) mice

deficient in NAD(P)H oxidase activity because they lack

(�knockout�) p47phox, an essential component of the vascu-

lar NAD(P)H oxidase. These mice had lower levels of aortic
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O5 �
2 production compared with wild-type mice and signifi-

cantly less atherosclerosis in their descending aortas [36].

Further support for NAD(P)H oxidase-induced oxidative

stress in neointimal hyperplasia was observed in balloon-

injured porcine [37] and rat [38] coronary arteries. In the rat

balloon injury model, Nox1 and p22phox were upregulated

3–15 days; the gp91phox, 7–15 days; and the Nox4, only

15 days after injury. These findings are consistent with both

spatiotemporal as well as dynamic and differential regulation

of the NAD(P)H oxidase isoforms. Direct evidence has also

been obtained for the role of NAD(P)H oxidase in angioplasty-

induced neointimal hyperplasia using the gp91 ds-Tat peptide

in a rat balloon angioplasty model [39]. The gp91 ds-Tat is a

chimeric peptide consisting of a fragment from the Tat peptide

of the HIV virus and a fragment of gp91phox which prevents

the interaction of p47phox with Nox subunits in cell-free

systems. The Tat fragment allowed the ready uptake of the

peptide inhibitor into the cells and inhibited both ROS

production and neointima/media area and thickness. This

peptide also inhibited stretch-induced ROS generation in

distended vessels and peroxynitrite formation following angi-

oplasty. We believe that together these data strongly support

the hypothesis that oxidative stress induced via activation of

NAD(P)H oxidases plays a causative role in atherosclerosis.

Human studies, although they are more correlative than

studies conducted in animal systems, also strongly support the

hypothesis that NAD(P)H oxidase-derived oxidative stress is

important in human atherosclerosis. High levels of vasoactive

agonists that induce oxidative stress in vitro have been demon-

strated in human atherosclerotic plaques by a number of

investigators. Angiotensin II was observed at the shoulder

regions of atherosclerotic plaques in human coronary arteries

[40].This is significantbecausemost instances ofplaque rupture,

the proximate cause of myocardial infarction, occur at the

shoulder of atherosclerotic plaques. Not only is angiotensin II

present in these sites, but there is also an abundance of the AT1

receptor [40], to which angiotensin II binds. Similarly increased

expression of a human thrombin receptor (PAR-1) was

observed in human atheroma [41]. Recently, Azumi et al. [42]

have reported that ROS production and Ox-LDL are spatially

associated with NAD(P)H oxidase subunit p22phox in athero-

sclerotic human coronary arteries. This observation supports

the notion thatROScatalyze the formationofOx-LDL, leading

to its uptake by macrophages and resulting in the formation of

activated foam cells [43]. The same authors also reported that

ROS production was significantly higher in patients with

unstable coronary syndromes compared with patients with

stable angina, suggesting thatROSmight evenmodulate plaque

stability. These results are supported by the observation that

intimal SMC, but not medial SMC and macrophages, express

high levels of NAD(P)H oxidase subunits [44]. ROS induce

plaque instability by inducing the expression of matrix-degra-

ding enzymes such as matrix metalloproteinase (MMP)-2 and

MMP-9 [45] and inducing endothelial and SMC apoptosis via

Ox-LDL [42]. Although the causal link is more difficult to

establish in human studies, in concert with findings in animal

models of atherosclerosis, these studies suggest that ROS are

important in human atherosclerosis also.

Mitochondrial ROS generation

It is becoming increasingly clear that under pathological

conditions, mitochondrial oxidative phosphorylation can

become uncoupled and results in the generation of O5 �
2 : The

paradigm that mitochondrial ROS are key determinants of

myocardial dysfunction has been addressed by a number of

investigators in both experimental animal systems and humans.

For example, in the rabbit heart, myocardial ischemia

decreased cytochrome oxidase activity [46,47], whereas inhibi-

tion of this enzyme enhanced myocardial damage [48]; this

suggests that disruption of electron flow at cytochrome oxidase

can lead to both enhanced ROS production and myocardial

damage. Increased mitochondrial ROS production also corre-

lated well with reduced oxidative capacity and development

and progression of left ventricular remodeling and failure in

mice [49]. Clinical manifestations of the disorders of oxidative

phosphorylation invariably include neuropathy, myopathy and

cardiomyopathy (reviewed in [50]). Examination of oxidative

phosphorylation enzyme activities in patients with cardiomy-

opathy revealed defects in respiratory chain complexes I, III, IV

and V. Similarly, a significant decrease in the activity of

complex I was observed in the failingmyocardium of explanted

hearts compared with donor hearts [51]. Thus, although it has

been shown that increased myocardial damage and diminished

mitochondrial function correlate with abnormalities in electron

transport complexes [52], the decline in mitochondrial function

further exacerbates ROS production which leads to a vicious

cycle [53] (Fig. 2).
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Fig. 2. In cardiovascular pathological conditions, increased reactive

oxygen species (ROS) production leads to respiratory chain dysfunction

and mtDNA damage. Mitochondrial respiratory chain dysfunction, in

turn, results in increased ROS production, thus completing a vicious cycle.
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Other oxidase systems

Xanthine oxidase (XO) generates O5 �
2 by the catalysis of

hypoxanthine and xanthine to uric acid. This is another major

source of vascular oxidative stress under pathophysiological

conditions [10]. Xanthine oxidase is present in plasma and

endothelial cells but not in SMC [54]. In hypercholesterolemic

rabbits, diet-induced atherosclerosis has been attributed to

increased oxidative stress caused by the activation of XO [55].

In hypercholesterolemic patients, administration of the XO

inhibitor oxypurinol improved vasodilation. Several additional

lines of evidence support an important role for XO in

atherosclerosis [56]. These include: (i) electron spin resonance

studies show significant activation of both NAD(P)H oxidase

and XO in the coronary arteries of patients with coronary

artery disease; (ii) endothelial XO is inversely proportional to

and positively related to the effect of vitamin C on endothe-

lium-dependent vasodilation in these patients; and (iii) increase

of vascular XO activity is an early event in asymptomatic

young individuals with familial hypercholesterolemia.

Another important ROS-generating system is represented by

the lipoxygenases (LO). The LO are non-heme-containing

dioxygenases that oxidize polyunsaturated fatty acids to

generate hydroperoxy fatty acid derivatives; these are another

important source of ROS production in the vascular wall [10].

Leukocyte-type 12/15-LO and its products, 12(S)-hydroxy-

eicosatetraenoic acid [12(s)-HETE] and 15(S)-HETE, have

been implicated in atherogenesis. In ApoE(–/–) mice, homo-

zygous deletion of the 12/15-LO results in a marked inhibition

of early atherosclerosis [57]. Moreover, inhibition of 12/15-LO

reduced hypertension in hypertensive rats [58] and prevented

intimal hyperplasia in balloon-injured rat carotid arteries [59],

which bolsters the role of this enzyme in vascular pathology.

Further, in cultured cells, 12/15-LO activation leads to SMC

growth, hypertrophy, and inflammatory gene expression; and

SMC deficient for this enzyme demonstrate impaired mitogen-

induced ROS generation [60,61].

Nitric oxide synthases (NOS), and in particular endothelial

NOS (eNOS) can also be sources of O5 �
2 under certain

pathophysiological conditions [54]. These enzymes transfer

electrons from a heme group in the oxygenase domain to the

substrate L-arginine to form L-citrulline and nitric oxide (NO)

in the presence of a cofactor 5,6,7,8-tetrahydrobiopterin (BH4).

If eitherBH4orL-arginineavailabilitydecreases, eNOSswitches

from a coupled state (generates NO) to an uncoupled state

(generates O5 �
2 ) as the electrons from the heme reduce oxygen

to formO5 �
2 [62]. Peroxynitrite oxidationofBH4was shown to

be the main mechanism for its deficiency and pathogenic

uncoupling of NOS [63]. It was further reported that oxidation

of BH4 requires NAD(P)H oxidase, as this process does not

occur inp47phox(–/–)mice that aremadehypertensive [64]. The

majority of studies report that induction of NO by L-arginine

supplementation decreases atherosclerosis in hypercholestero-

lemic animal models and improves vascular function in hyper-

cholesterolemic or hyperhomocysteinemic humans [65],

whereas other studies fail to show such effects [66].

ROS scavenging systems

Just as there are many systems within the cell that generate

ROS, there are many cellular systems that can degrade ROS.

Catalase, SODs, and disulfide reduction reactions (GPx/

glutathione reductase/GSH) have all been shown to be

important (Fig. 3). Although beyond the scope of this review,

the degradation of ROS is equally important to the generation

of ROS in regulating ambient levels of ROS in the cell.

Oxidative stress and aging

Age is a risk factor for many vascular diseases and adults over

65 are two and one-half times more likely to suffer from

hypertension and four timesmore likely to suffer fromcoronary

heart disease than are those in the 40–49 years age group [67].

Age–risk factor and age–disease interactions are two very

plausible explanations for the increased incidence ofCVD in the

elderly. In the age–risk factor hypothesis, the longer the

individual is exposed to age-dependent risk factors such as

hypertension, diabetes, obesity, and sedentary life style, the

greater the likelihood that clinically important CVD will

develop. In the second hypothesis, cardiovascular structure

and function change during the aging process and specific

pathophysiological mechanisms linked to experimental hypo-

thesis, when superimposed on this altered substrate, result in

clinically manifest CVD.

Evidence for increased oxidative stress with aging and its

involvement in greater susceptibility to vascular disease is
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obtained from biochemical, physiological and genetic studies.

Arterial remodeling in rats includes progressive dilation of

vessels associated with intimal thickening [68]. Alteration in the

collagen and elastin content of aorta from aged rats coincides

with decreased arterial compliance [69]. Increased expression of

transforming growth factor-b, intercellular adhesion molecule-

1, and MMP-2 staining and activity, often localized near the

breaks in internal elastic membrane, was observed in the

thickened intima of aged rats compared with younger rats [70].

Arteriopathy associated with aging was linked to phenotypic

alteration of vascular SMC when MMP-2 secretion, in

response to cytokine treatment, was greater in the aortic

SMC from aged rats compared with those of young rats. Age-

associated arterial remodeling can be attributed to enhanced

oxidative stress [71,72]. Interestingly, it was recently shown that

homozygous deletion of p66shc, a gene involved in systemic

and tissue oxidative stress, not only decreased early atherogen-

esis in mice fed a high-fat diet [73], but also extended their

lifespan [74]. This suggests that steady-state levels of intracel-

lular oxidants and oxidative damage are genetically determined

and are regulated by environmental cues [75].

The effect of aging-associated oxidative stress on vascular

disease can be inferred from the study of antioxidant enzyme

activities and the beneficial effects of antioxidants in alleviating

disease symptoms. In the cerebral cortex and hippocampus of

stroke-prone spontaneously hypertensive rats, activity of the

antioxidant enzymes SOD and NOS decreased with age and

was correlated with cerebral lesions [76]. Arterial pressure was

increased, phenylephrine-induced vascular contraction

was enhanced, and acetylcholine-induced vascular relaxation

was reduced in aged spontaneously hypertensive rats (SHR)

compared with young ones [77]. Tempol, an SOD mimic,

reduced arterial pressure and phenylephrine-induced vascular

contraction in aged SHR rats. In contrast, in aged SHR rats

treated with tempol and vitamin E +C, L-NAME (Nx-nitro-

L-arginine methyl ester), a NOS inhibitor, and ODQ

(1H-[1,2,4] oxadiazolo [4,3] quinoxalin-1-one), an inhibitor of

cGMP (guanosine 3¢,5¢-cyclic monophosphate) production

in SMC, inhibited acetylcholine-induced relaxation, and

enhanced phenylephrine-induced vascular contraction. These

data suggest that aging is associated with impaired vascular

relaxation pathways and that oxidative stress is involved in the

reduction of vascular relaxation, promotion of vascular

contraction, and hypertension in aged rats [77].

Similar age-related adaptive changes also occur in the

vascular structure of normal humans. These changes include

increases in arterial stiffening; increases in aortic root size and

aortic wall thickness; and measurable abnormalities in vascular

function such as enhanced arterial systolic pressure, pulse

pressure, and pulse wave velocity [78]. Collagen content is

increased but elastin content is decreased [79]. As in animal

models, age-related endothelium-dependent vasodilation was

observed in humans [80]. Acetylcholine-induced NOS-depend-

ent vasodilation decreased with age in normotensive individ-

uals whereas it was present in younger hypertensive subjects

(age<30 years). VitaminC enhanced acetylcholine-dependent

vasodilation in both normotensive and hypertensive individuals

but it was evident in much older normotensive individuals (age

>60 years) compared with younger hypertensive individuals

(age >30 years). These results suggest that early dysfunction

of the NO system is later followed by age-related oxidative

stress-impaired endothelium-dependent vasorelaxation. The

prevalence of non-fatal myocardial infarction increases with

age and is more significant in individuals with low-activity

antioxidant paraoxonase1 polymorphic allele [81].

Oxidative stress and DNA damage

DNA damage is another purported mechanism of oxidative

stress-induced vascular disease. Evidence for DNA damage in

atherosclerosis includes the presence of 8-hydroxy-2¢-deoxy-
guanosine (8-OH-dG), a typical indicator of oxidative DNA

damage andDNAadducts in atherosclerotic lesions and tissues

[82–84]. Patients with atherosclerosis have significantly higher

levels of 8-OH-dG in leukocytes compared with healthy

subjects [85,86]. A similar increase in 8-OH-dG levels was

observed in macrophage-derived foam cells in the atheroscler-

otic plaques of rabbits fed a cholesterol-rich diet [87]. DNA

strand breaks andDNA repair enzymes, whichwere elevated in

cholesterol-fed animals, were reduced with dietary lipid

lowering.

Compared with nuclear DNA, mitochondrial DNA

(mtDNA) is more prone to oxidative DNA damage because

of its proximity to the sources of ROS generation in the

mitochondrial inner membrane, its lack of protective histone-

like proteins, and its poor DNA damage-repair activity [88].

MtDNA damage eventually leads to decreased mtRNA

transcription and the consequent loss of function [89]. Consis-

tent with this, we have shown that exogenous ROS cause

mtDNA damage and decrease mtDNA-encoded gene tran-

scription in a dose-dependent manner [90]. The resultant

decrease in cellular ATP levels and mitochondrial redox

function in vascular cells indicates how mtDNA damage

affects vascular cell function in the setting of atherogenesis.

Decreases in mtRNA and protein levels that lead to mitoch-

ondrial dysfunction in heart failure could also arise from a

decrease in mtDNA copy number [91]. The generation of

oxidative energy inmitochondria is essential for normal cardiac

function; deficiencies in respiratory enzyme activities and

oxidative phosphorylation associated with enhanced oxidative

stress are observed in heart failure [92]. We have demonstrated

that mtDNA damage not only correlated with the extent of

atherosclerosis in human specimens and the aortas from

ApoE(–/–) mice, but also preceded atherogenesis in ApoE(–/–)

mice [93]. ApoE(–/–) mice deficient in manganese SOD

(SOD2), a mitochondrial antioxidant enzyme, exhibited early

increases in mitochondrial DNA damage and a phenotype of

accelerated atherogenesis at arterial branch points. Enhanced

mtDNAdamage, as measured by increases in protective 8-oxo-

dGTPase levels, was observed in post-myocardial infarction

mice hearts, which suggests that mtDNA damage is important

in heart failure [94].
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Oxidative stress and heart failure

Oxidative stress is a hallmark of chronic heart failure [95,96].

Antioxidants prevent the progression of several pathologic

processes—such as cardiac hypertrophy, cardiac myocyte

apoptosis, ischemia-reperfusion, and myocardial stun-

ning—which lead to heart failure in animal models. TNF-a
and angiotensin II induced hypertrophy in rat cardiac

myocytes in a ROS-dependent manner and this was prevented

in the presence of the antioxidants butylated hydroxyanisole,

vitamin E, and catalase [97]. In vascular SMC, angiotensin

II-induced hypertrophy was significantly reduced by overex-

pression of catalase, and transfection with antisense p22phox

inhibited angiotensin II-induced H2O2 production, suggesting

that NAD(P)H oxidase-induced oxidative stress was an

underlying cause of hypertrophy [98]. NAD(P)H oxidase-

dependent ROS production increased progressively during

compensated hypertrophy and peaked at the stage of decom-

pensated heart failure in guinea pig, indicating that ROS may

be important mediators of heart failure [99]. Structural damage

and contractile dysfunction in the failing heart might also arise

from xanthine oxidase [100] and mitochondria [101]. Enhanced

ROS production may reduce NO bioavailability and impair

diastolic function [102], and enhanced levels of peroxynitrite

may cause cytokine-induced myocardial contractile failure by

inactivating sarcoplasmic Ca2+-ATPase and dysregulating

Ca2+ homeostasis [103,104].

Emerging evidence indicates that oxidative stress in general

and NAD(P)H oxidase-derived ROS in particular are import-

ant in heart failure. Upregulation of NAD(P)H oxidase-

derived ROS was observed in the failing myocardium of

patients with ischemic or dilated cardiomyopathy [105]. In

patients with heart failure, plasma TNF-a levels and platelet-

derived NAD(P)H oxidase activity were elevated [106].

Recently, the presence and activation of NAD(P)H oxidase

along with increased translocation of regulatory p47phox from

the cytosol to the sarcolemmal membrane was established in

human cardiomyocytes [107]. Together, these results suggest

that oxidative stress contributes to the pathophysiology of

cardiac dysfunction in heart failure.

Oxidative stress and stroke

Oxidative stress has been implicated in brain injury following

ischemia and reperfusion, and free radicals produced during

cerebral ischemia induce lipid peroxidation, protein oxidation,

and DNA damage [108–110]. The best evidence for oxidative

stress in ischemia-induced brain injury was obtained from

genetic manipulation of antioxidant enzymes in rodents.

Exacerbated infarct size [111], increased mitochondrial cyto-

chrome c release, and DNA fragmentation [112] were observed

in SOD2 knockout mice following permanent focal cerebral

ischemia, whereas mice that overexpress SOD2 showed neur-

onal protection after transient focal cerebral ischemia [113]. In

consonance with this, following photothrombotic ischemia, a

reduction in blood–brain barrier disruption and infarct size

along with decreased oxidative DNA damage and DNA

fragmentation were observed in copper/zinc SOD (SOD1)

transgenic mice compared with wild-type mice [114]. This

suggests that O: �
2 plays a critical role in oxidative cellular

injury. In a mouse ischemia-reperfusion model, deficiency of

the antioxidant enzyme GPx-1 resulted in a 3-fold increase in

brain infarct volume when compared with wild-typemice [115].

Increased infarct volume was associated with early activation

of caspase-3 expression and enhanced apoptosis. Consistent

with this, infusion of ebselen, a GPx mimic, before and during

middle cerebral artery occlusion in rats conferred significant

protection against ischemic damage [116]. Support for the role

of oxidative stress in cerebral ischemia was also obtained from

mice deficient in NOS isoforms. A reduction in infarct size was

noted following permanent focal cerebral ischemia in mice

deficient in neuronal (nNOS) [117,118] and inducible (iNOS)

[119] isoforms, whereas an increase in lesion volume was

observed in endothelial-type isoform (eNOS) knockout mice

[120]. Electron spin resonance spectroscopy studies revealed

high oxidative stress in the brains of stroke-prone spontane-

ously hypertensive rats comparedwithWistar-Kyoto rats [121].

A decrease in glutathione concentration preceded cerebral

infarction in severe transient focal cerebral ischemia in rats,

suggesting that early oxidative stress might contribute to

cerebral damage in stroke [122].

Significant increases in plasma homocystine, lipid peroxide,

and NO and a decrease in ascorbate levels were observed in

stroke patients compared with healthy controls [123]. Circula-

ting phagocytes showed enhanced ROS production by opsonin

receptor-dependent and opsonin receptor-independent mecha-

nisms in patients with ischemic stroke compared with healthy

individuals [124]. Together, these observations suggest that

oxidative stress plays a distinct role in the pathogenesis of

ischemic brain injury.

Oxidative stress and arterial thrombosis

Thrombosis, a consequence of plaque disruption, is the late

complication of atherosclerosis and arterial thrombi are

primarily composed of platelets [125]. Endothelial denudation

and high shear force around the swollen plaque are also potent

stimuli for coronary thrombosis [126]. Arterial thrombosis is a

major pathogenic mechanism in acute coronary syndromes

[127,128] and involves cross-talk among platelets, leukocytes

and endothelial cells [129]. A plethora of stimulatory or

inhibitory agonists may influence the formation of platelet–

leukocyte aggregates which may facilitate leukocyte tethering,

rolling and migration and enhance thrombin generation

[130,131]. Leukocyte-released O5 �
2 is one of the factors that

could induce platelet–leukocyte aggregation [132]. Procoagu-

lant activities of monocytes/macrophages are mediated by

tissue factor [133], which is the receptor and cofactor for

plasma factor VII(a), which, in turn, initiates the coagulation

cascade leading to thrombogenesis in vivo [134]. It has also been

shown that polymorphonuclear leukocytes modulate tissue

factor expression by mononuclear cells via ROS, suggesting
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that oxidative stress induced by polymorphonuclearmonocytes

plays an important role in the pathogenesis of thrombosis and

atherosclerosis [135]. Emerging evidence supports the presence

of NAD(P)H oxidase in platelets that can be activated via

protein kinase C [136–138]. In fact, NAD(P)H oxidase

activation and ROS generation were involved in tissue factor

upregulation in activated platelets [139,140]. Superoxide

formation by hyperactive platelets during hyperhomocysteine-

mia may be one mechanism that contributes to arterial

thrombosis [141,142].

In pathophysiological conditions such as hyperglycemia,

upregulation of O5 �
2 production from hyperactive platelets

might form the physiological basis for prolonged thrombus

formation [136]. The ROS-dependent enhancement of the

activation of the platelets is kept in check by endothelium- and

platelet-derived NO. eNOS overexpression in endothelial cells

inhibits platelet aggregation in vitro [143]. In addition, NO can

inhibit platelet 12-LO, an enzyme involved in the synthesis of

the radical 12(S)-HETE [144]. NO can react with O: �
2 to form

the radical peroxynitrite and, paradoxically, localized peroxy-

nitrite generation can limit thrombosis in several ways. These

include: (i) limiting available O: �
2 ; (ii) impairing thromboxane

A2 generation by inactivating cyclooxygenanse-1 [145]; (iii)

S-nitrosothiol-dependent inhibition of thromboxane A2 syn-

thesis [146]; and (iv) inhibiting cyclooxygenase-1 [147]. Then

platelet-derived arterial thrombosis is both a cause and a

consequence of oxidative stress in the vasculature [148]. These

in vitro observations suggest that platelet–leukocyte interac-

tions and platelet-derived ROS are important mediators of

thrombosis and atherosclerosis.

The importance of oxidative stress in arterial thrombosis is

also obtained from experimental animal models of thrombosis

and clinical investigations. A deficiency of bioactive NO is

associated with arterial thrombosis in mice that lacked

functional eNOS (NOSIII). These mice were deficient in

platelet-derived NO also and had shorter bleeding times

compared with wild-type mice [149]. In addition, thrombocy-

topenic wild-typemice transfused with eNOS-deficient platelets

had significantly shorter bleeding times compared with mice

transfused with wild-type platelets, which suggests that lack of

platelet-derived NO alters the in vivo hemostatic response by

increasing platelet recruitment. In an experimental mouse

thrombosis model a moderate iron overload markedly accel-

erated thrombus formation, impaired vasoreactivity, enhanced

production of ROS and systemic markers of oxidative stress

also [150]. ROS scavenger DL-cysteine completely abrogated

the iron load-induced thrombus formation which corroborates

the role of oxidative stress, at least in specific thrombotic

events. Antioxidant vitamin E has been shown to decrease

arterial O5 �
2 production, increase platelet NO release, and

delay intra-arterial thrombus formation [151,152]. Also sup-

porting the role of oxidative stress in arterial thrombosis is the

observation that ROS upregulate the expression of plasmino-

gen activator inhibitor (PAI)-1 in endothelial cells [153] and

enhanced PAI-1 expression in vasculature promotes prothrom-

botic phenotype and atherosclerosis in ApoE(–/–) mice [154].

Evidence for a causal relationship between oxidative stress

and arterial thrombosis was obtained from investigation of

patients with childhood stroke [155,156]. These patients had

deficiency of plasma GPx-3 and platelet inhibitory activity of

the NO donors to the plasma of these patients was restored

only upon exogenous addition of GPx [155]. In addition,

P-selectin expression in response to thrombin treatment on

platelets in these patients correlated well with the extent of

GPx-3 deficiency [156]. NO production is impaired from the

aggregating platelets of patientswith acute coronary syndromes

[157]. Although the exact mechanism for decreased NO release

from the platelets of these patients has not been established,

oxidative stress was implicated in the altered function of the

platelets. Together, these observations indicate a strong corre-

lation between oxidative stress and arterial thrombosis.

Antioxidants: the good, the bad and the ugly

Despite the preponderance of evidence for the association of

increased oxidative stress with various vascular diseases, the

outcomes of the use of antioxidants for prevention of CVD

have been mixed [158,159]. Of the 12 studies that used

antioxidant vitamins at varying concentrations and follow-up

times, five showed benefit with regard to their respective

primary endpoints. In theCambridgeHeartAntioxidant Study

(CHAOS), natural alphatocopherol (RRR-AT) at a dose of

either 400 or 800 IU day)1 caused a significant reduction in the

combined primary endpoints of cardiovascular death and

non-fatal myocardial infarction [160]. In the Secondary Pre-

vention with Antioxidants of Cardiovascular disease in End-

stage renal disease (SPACE) study, RRR-AT at 800 IU day)1

significantly reduced the composite primary endpoint—which

includes fatal and non-fatal myocardial infarction, ischemic

stroke, peripheral vascular disease, and unstable angina—in

hemodialysis patients with pre-existing CVD [161]. Investiga-

tion of transplant-associated atherosclerosis with a small

sample size (total N ¼ 40) revealed inhibition of progression

of coronary intimal index (plaque area/vessel area) with

combined supplementation of RRR-AT (800 IU day)1) and

ascorbic acid (AA; 1000 mg day)1) [162]. In the Antioxidant

Supplementation in Atherosclerosis Prevention (ASAP) Study

(N ¼ 440), a combination of RRR-AT (272 IU day)1) and

slow-release AA (500 mg day)1) significantly decreased carotid

intimal medial thickness in hypercholesterolemic males

[163]. During 16 years of follow-up with the women in the

Nurses’ Health Study (N ¼ 85 118), vitamin C intake of

>359 mg day)1 from diet plus supplements or supplement use

alone was associated with a significant reduction in non-fatal

and fatal myocardial infarction [164]. Contrary to these

positive studies, seven other antioxidant supplementation

studies did not show any effect on the primary endpoint of

cardiovascular events (reviewed in [158]).

There could be several reasons for the apparent lack of

effectiveness of antioxidants in preventing CVD. Atheroscl-

erosis is a multifactorial disease and oxidative stress may be the

predominant effector of pathology only in a subset of patient
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population. This could be the reason for the apparent lack of

efficacy of antioxidants tested in large, prospective cardiovas-

cular clinical trials. The second reason could relate to the

optimumdose and the type of antioxidants that are used. In this

regard, a dose of 800 IU day)1 of RRR-AT and 500 mg day)1

of AA have been suggested as effective threshold doses

[158,165]. However, a recent meta-analysis of data from 19

clinical trials revealed that high doses (‡ 400 IU/d)may slightly

increase all-cause mortailty (Miller et al, AHA meeting, New

Orleans, LA, USA). Antioxidant formulation is also important

as five out of seven antioxidant supplementation trials that are

ineffective on primary endpoints used all-racemic-AT (all-rac-

AT), whereas four trials described above that had positive

results used RRR-AT [158]. The third reason for antioxidants’

inefficacy in CVD prevention could be the complexity of redox

reactions in vivo and the possibility of a paradoxical increase in

oxidant generation by antioxidants. For example, high doses of

vitaminCsupplementation increased free radical-inducedDNA

damage in healthy volunteers [166]. Similarly b-carotene was

linked to an increased risk of ischemic heart disease [167] and it

could be that this antioxidant acts as an oxidant under certain

conditions [168]. It is hypothesized that transitionmetal ions are

released from metalloproteins after initial oxidative stress and

the transition metals can act as catalysts in the presence of

antioxidants to exacerbate the free radical damage [169].

Until ourunderstandingof thenexusbetweenoxidative stress

andCVDadvances to the extent that permits the effective use of

antioxidant vitamins for primarypreventionof vascular disease,

we must rely on a combination of preventive measures such as

healthy diet and lifestyle, and proven pharmacological agents

such as statins and ACE inhibitors, to combat vascular disease.

Conclusions

Investigation of animal models of atherosclerosis and correla-

tive data from human studies implicate oxidative stress in the

development of atherosclerosis and other vascular diseases.

However, our understanding of the ROS-dependent signal

transduction mechanisms, their localization, and the integra-

tion of both ROS-dependent transcriptional and signaling

pathways in vascular pathophysiology is limited. In order to

develop effective pharmacological interventions, the oxidative

stress phenotypes that underlie various vascular pathologies

will need to be defined and a phenotype–genotype linkage that

incorporates the recent advances in mouse and human genetics

will need to be devised. These should be complemented by

studies that phenotype vascular cells and their progenitors,

which will further contribute to the development of regener-

ative therapies. Ultimately, remedial measures for oxidative

stress-induced vascular malfunction will employ a combination

of preventive and regenerative therapies.
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